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Tripartite entanglement is examined when one of the three parties moves with a uniform acceleration with
respect to other parties. As the Unruh effect indicates, tripartite entanglement exhibits a decreasing behavior with
increasing acceleration. Unlike bipartite entanglement, however, tripartite entanglement does not completely
vanish in the infinite acceleration limit. If the three parties, for example, share the Greenberger-Horne-Zeilinger
or W state initially, the corresponding π -tangle, one of the measures of tripartite entanglement, is shown to be
π/6 ∼ 0.524 or 0.176 in this limit, respectively. This fact indicates that tripartite quantum-information processing
may be possible even if one of the parties approaches the Rindler horizon. The physical implications of this striking
result are discussed in the context of black-hole physics.
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I. INTRODUCTION

It is well known that entanglement of quantum states is
a genuine physical resource for various quantum-information
tasks such as quantum teleportation [1], quantum cryptogra-
phy [2], and quantum computer technology [3]. For this reason,
much attention has recently been paid to the various properties
of entanglement [4].

In addition to the pure quantum-mechanical aspect, it is
also important to analyze the entanglement of the multipartite
quantum state in the relativistic framework. Evidently, this
is an interesting subject from a fundamental point of view.
Furthermore, it is also important from a practical perspective,
because many modern experiments on quantum-information
processing use photons or other particles which have rel-
ativistic velocities. The bipartite entanglement between in-
ertial frames was investigated in Ref. [5]. The remarkable
fact regarding entanglement between inertial frames is its
conservation, although the entanglement between some de-
grees of freedom can be transferred to others. Still, it is
not obvious why entanglement between inertial frames is
preserved.

The bipartite entanglement between noninertial frames
was initially studied by Fuentes-Schuller and Mann (FM) in
Ref. [6]. They showed that the maximal bipartite entanglement
between inertial parties is degraded if the observers are rela-
tively accelerated. With increasing acceleration, degradation
of entanglement becomes larger and larger, and eventually
the bipartite state reduces to the separable state at infinite
acceleration. This phenomenon is sometimes called Unruh
decoherence and is closely related to the Unruh effect [7].
Due to the resemblance between the Unruh effect and
Hawking radiation [8], FM predicted that the degradation of
entanglement occurs in black-hole physics. The degradation
phenomenon of bipartite entanglement in a Schwarzschild
black hole was investigated in Ref. [9]. Although entanglement
is degraded near a Schwarzschild black hole as FM predicted,
there is a subtle difference arising due to the difference
between an event horizon in Schwarzschild space-time and an
acceleration horizon in Rindler space-time. Recently, quantum

teleportation between noninertial observers has also been
discussed in detail in Ref. [10].

Before we start discussing our main subject, it is worthwhile
noting that a few years ago there was a debate on the physical
relevance of the Unruh effect [11]. Authors in Ref. [11] argue
that the Unruh effect can be realized only when the quantum
field operator satisfies a particular boundary condition at the
spatial boundary of the space-time manifold. They argued that
due to this boundary condition, the Unruh effect can be realized
in a double Rindler wedge rather than in the usual Minkowski
space. Subsequently, refutation and defense of their argument
were published in Ref. [12]. However, a discussion on this
debate in detail is beyond the scope of present paper. Here,
we will discuss tripartite entanglement in a noninertial frame
assuming that the Unruh effect is physically relevant in the
Minkowski space.

In this paper, we discuss tripartite entanglement in a non-
inertial frame. As far as we know there are two entanglement
measures which quantify the genuine tripartite entanglement:
three-tangle [13] and π -tangle [14]. The three-tangle has
many nice properties and exactly coincides with the modulus
of Cayley’s hyperdeterminant [15]. It is also an invariant
quantity under the local SL(2,C) transformation [16]. Despite
its nice features, it has a drawback due to its calculational
difficulty. Since we need an optimal decomposition for
the analytical computation of the three-tangle for a given
tripartite mixed state, it is highly difficult to compute the
three-tangle analytically except in a few rare cases [17]. In
order to escape this difficulty, we adopt the π -tangle for the
quantification of tripartite entanglement solely because of its
calculational easiness. The physical roles of the three-tangle
and π -tangle in real quantum-information processing was
recently discussed in Ref. [18] in detail.

In this paper we are considering the following situation.
Let Alice, Bob, and Charlie share the Greenberger-Horne-
Zeilinger (GHZ) [19] or W state [20] initially when they are not
moving relatively. Subsequently, Charlie moves with a uniform
acceleration with respect to Alice and Bob. We compute the
π -tangle as a function of Charlie’s acceleration. It is shown
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in this paper that the π -tangle, in general, decreases with
increasing acceleration as in bipartite entanglement. However,
we show that unlike bipartite entanglement, the π -tangle does
not completely vanish even if Charlie moves with an infinite
acceleration. This is a striking result in the sense that this
fact implies the possibility of tripartite quantum-information
processing although Charlie approaches the Rindler horizon.

This paper is organized as follows. In Sec. II we consider a
situation where Alice, Bob, and Charlie share the GHZ state
initially. It is shown that the resulting π -tangle decreases when
Charlie’s acceleration increases from 1 at zero acceleration to
π/6 ∼ 0.524 at infinite acceleration. In Sec. III the GHZ state
in the previous section is replaced with the W state. It is shown
that the π -tangle in this case also decreases when acceleration
increases from 4(

√
5 − 1)/9 ∼ 0.55 at zero acceleration to

0.176 at infinite acceleration. In Sec. VI we discuss the
physical implications of the results in the context of black-hole
physics.

II. GHZ STATE

In this section we assume that Alice, Bob, and Charlie share
initially the GHZ state defined as

|GHZ〉ABC = 1√
2

[|000〉ABC + |111〉ABC]. (2.1)

After sharing his own qubit, Charlie moves with respect to
Alice and Bob with a uniform acceleration a. Then, Charlie’s
vacuum and one-particle states |0〉M and |1〉M , where the
subscript M stands for Minkowski, are transformed into [6]

|0〉M → 1

cosh r

∞∑
n=0

tanhn r|n〉I |n〉II ,

(2.2)

|1〉M → 1

cosh2 r

∞∑
n=0

tanhn r
√

n + 1|n + 1〉I |n〉II ,

where r is a parameter proportional to Charlie’s acceleration,
and |n〉I and |n〉II are the mode decomposition in the two
causally disconnected regions in Rindler space. Equation (2.2)
implies that the physical information formed initially in
region I is leaked to the inaccessible region (region II) due to
accelerating motion. This loss of information causes a particle
detector in region I to detect a thermally average state, which
is a main scenario of the Unruh effect [7].

Therefore, Charlie’s acceleration transforms the GHZ
state into

|GHZ〉ABC → 1√
2 cosh r

∞∑
n=0

tanhn r

[
|00n〉|n〉II

+
√

n + 1

cosh r
|11n + 1〉|n〉II

]
, (2.3)

where |abc〉 = |ab〉MAB ⊗ |c〉I . Since |ψ〉II is a physically
inaccessible state from Alice, Bob, and Charlie, we should
average it out via a partial trace. Thus, the quantum state

shared by Alice, Bob, and Charlie reduces to the following
mixed state:

ρGHZ = 1

2 cosh2 r

∞∑
n=0

tanh2n r

[
|00n〉〈00n|

+
√

n + 1

cosh r
{|00n〉〈11n + 1| + |11n + 1〉〈00n|}

+ n + 1

cosh2 r
|11n + 1〉〈11n + 1|

]
. (2.4)

This is very similar to the information loss of Hawking
radiation in the black-hole physics, where the pure “in” state
becomes the thermally mixed “out” state due to gravitation
collapse [21].

To quantify how much ρGHZ is entangled, we introduce a
π -tangle [14] defined as

π = πA + πB + πC

3
, (2.5)

where

πA = N 2
A(BC) − N 2

AB − N 2
AC,

πB = N 2
B(CA) − N 2

BC − N 2
BA, (2.6)

πC = N 2
C(AB) − N 2

CA − N 2
CB.

In Eq. (2.6), Nα(βγ ) and Nαβ are one-tangle and two-tangle,
respectively, defined as Nα(βγ ) ≡ ||ρTα

GHZ|| − 1 and Nαβ ≡
||(trγ ρGHZ)Tα || − 1. Here Tα denotes the partial transposition
for the α qubit, and ||A|| is a trace norm of operator A defined
as ||A|| ≡ tr

√
AA†.

Although one-tangle can be easily computed in the qubit
system by using N 2

A(BC) = 4 detρA, where ρA = trBC ρABC ,
we cannot use this convenient formula because Charlie’s
accelerating motion makes the quantum state an infinite-
dimensional qudit state. Thus, we have to use the original
definition for computation of one-tangle.

Now, let us compute one-tangles. In order to compute
NA(BC) first we should derive ρ

TA

GHZ, which is

ρ
TA

GHZ = 1

2 cosh2 r

∞∑
n=0

tanh2n r

[
|00n〉〈00n|

+
√

n + 1

cosh r
{|10n〉〈01n + 1| + |01n + 1〉〈10n|}

+ n + 1

cosh2 r
|11n + 1〉〈11n + 1|

]
. (2.7)

From ρ
TA

GHZ it is straightforward to derive (ρTA

GHZ)(ρTA

GHZ)†, whose
matrix representation is a diagonal one. Thus, it is simple to
show that the eigenvalues of (ρTA

GHZ)(ρTA

GHZ)† are

{
tanh4n r

4 cosh4 r
,
(n+1) tanh4n r

4 cosh6 r
,
(n+1) tanh4n r

4 cosh6 r
,
(n+1)2 tanh4n r

4 cosh8 r

∣∣∣∣n
= 0,1,2, . . .

}
. (2.8)
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Using Eq. (2.8) one can compute the one-tangle NA(BC) by
making use of its original definition ||ρTA

GHZ|| − 1, which is

NA(BC) = 1

cosh3 r

∞∑
n=0

√
n + 1 tanh2n r. (2.9)

When deriving Eq. (2.9) we used the following formulas

∞∑
n=0

tanh2n r = cosh2 r,

(2.10)∞∑
n=0

(n+1) tanh2n r = cosh4 r.

Introducing a polylogarithm function Lin(z) defined as

Lin(z) ≡
∞∑

k=1

zk

kn
= z

1n
+ z2

2n
+ z3

3n
+ · · · , (2.11)

one can express NA(BC) as

NA(BC) = 1

sinh2 r cosh r
Li−1/2(tanh2 r). (2.12)

By repeating the calculation, one can show NB(AC) = NA(BC),
which is, in fact, obvious by considering a symmetry of the
GHZ state.

Now, let us compute the one-tangle NC(AB). After deriving
ρ

TC

GHZ from ρGHZ given in Eq. (2.4), one can construct
(ρTC

GHZ)(ρTC

GHZ)†, whose explicit expression is

(
ρ

TC

GHZ

)(
ρ

TC

GHZ

)† = 1

4 cosh4 r

∞∑
n=0

tanh4n r

[(
1 + n cosh2 r

sinh4 r

)
|00n〉〈00n| +

(
n + 1

cosh2 r
+ n2

sinh4 r

)
|11n〉〈11n|

+√
n + 1

(
sinh2 r

cosh3 r
+ n

cosh r sinh2 r

)
{|00n + 1〉〈11n| + |11n〉〈00n + 1|}

]
. (2.13)

Unlike the previous cases, the matrix representation of (ρTC

GHZ)(ρTC

GHZ)† is not a diagonal matrix. However, one can compute the
eigenvalues of (ρTC

GHZ)(ρTC

GHZ)† analytically by ordering the basis of Hilbert space as

{|000〉,|110〉,|001〉,|111〉,|002〉,|112〉, . . . ,|010〉,|100〉,|011〉,|101〉,|012〉,|102〉, . . .}. (2.14)

Then, the nonvanishing eigenvalues of (ρTC

GHZ)(ρTC

GHZ)† are{
1

4 cosh4 r
,λ±

n (n = 0,1,2, . . .)

}
, (2.15)

where

λ±
n = tanh4n r

8 cosh4 r

[{
2(n + 1)

cosh2 r
+ n2

sinh4 r
+ tanh4 r

}
±

√{
2(n + 2)

cosh2 r
+ n2

sinh4 r
+ tanh4 r

}{
2n

cosh2 r
+ n2

sinh4 r
+ tanh4 r

}]
.

(2.16)

Thus, the one-tangle NC(AB) can be computed straightfor-
wardly from its definition, whose explicit expression is

NC(AB) = ∣∣∣∣ρTC

GHZ

∣∣∣∣−1 = 1

2 cosh2 r
+

∞∑
n=0

(
√

λ+
n +

√
λ−

n ) − 1.

(2.17)
It seems to be impossible to express NC(AB) in terms of the
polylogarithmic function as the previous cases.

We plot the r dependence of one-tangles in Fig. 1. All one-
tangles become unity at r = 0, which is exactly the value of
one-tangles at the rest frame. As expected from the degradation
of the bipartite entanglement in the noninertial frame, all
one-tangles decrease with increasing acceleration of Charlie.
At r → ∞, NC(AB) goes to zero. This can be understood from
the fact that Alice and Bob cannot contribute to Charlie’s
entanglement because of Charlie’s infinite acceleration with
respect to Alice and Bob. From this fact, we guess that the
one-tangle NC(AB) goes to zero when Charlie falls into a black
hole, while Alice and Bob are near the event horizon of the
black hole. This fact also predicts that the Coffman-Kundu-

Wootters (CKW) inequality [13], N 2
C(AB) � N 2

CA + N 2
CB , is

saturated at r → ∞. As will be shown shortly, this is indeed
the case. The surprising fact is that the one-tangles NA(BC) and
NB(CA) do not vanish but go to

√
π/2 ∼ 0.886 in the r → ∞

limit. Mathematically, this limiting value originates from
particular properties of the polylogarithmic function. Although
we can understand that this limiting value is a remnant of
entanglement between Alice and Bob without Charlie, we do
not know why the remnant is equal to this particular value√

π/2.
Now, let us compute two-tangles. Since ρAB

GHZ ≡ trC ρGHZ =
(1/2)(|00〉〈00| + |11〉〈11|), it is easy to show that

NAB = ∣∣∣∣(ρAB
GHZ

)TA
∣∣∣∣ − 1 = 0. (2.18)

Since ρAC
GHZ = ρBC

GHZ, NAC should be equal to NBC . One can
show that the eigenvalues of (ρAC

GHZ)TA (ρAC
GHZ)TA† are

{
tanh4n r

4 cosh4 r
, (n + 1)2 tanh4n 4

4 cosh8 r

∣∣∣∣n = 0,1,2, . . .

}
. (2.19)
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π

FIG. 1. (Color online) The r dependence of the one-tangles when
Alice, Bob, and Charlie share the GHZ state initially. All one-tangles
exhibit a decreasing behavior with increasing r . This figure shows that
while NC(AB) reduces to zero at the r → ∞ limit, other one-tangles
do not completely vanish but go to

√
π/2 ∼ 0.886 in this limit.

Using Eq. (2.10), therefore, one can show easily that

NAC = NBC = 0. (2.20)

Thus, the two-tangles do not change in spite of Charlie’s
accelerating motion.

Figure 2 is a plot of r dependence of π -tangle when Alice,
Bob, and Charlie share initially the GHZ state. Like bipartite
entanglement, the π -tangle decreases as Charlie’s accelera-
tion increases. Unlike bipartite entanglement, however, the
π -tangle does not completely vanish in the r → ∞ limit but
approaches π/6 ∼ 0.524 in this limit. This fact enables us to
predict that the tripartite entanglement does not completely
vanish when Charlie falls into a black hole. If so, this is a very
surprising result because this fact implies that the quantum
communication process might be possible between parties
even in the presence of the event horizon. This prediction

π

π

FIG. 2. (Color online) The r dependence of the π -tangle when
Alice, Bob, and Charlie share the GHZ state initially. This figure
indicates that the π -tangle does not vanish, but reduces to π/6 ∼
0.524 in the r → ∞ limit. The physical implications of this result
are discussed in the final section of this paper.

should be checked in the near future by incorporating quantum-
information theories into black-hole physics.

III. W STATE

In this section we assume that initially Alice, Bob, and
Charlie share the W state

|W 〉ABC = 1√
3

(|001〉ABC + |010〉ABC + |100〉ABC). (3.1)

By making use of Eq. (2.2) one can show that after Charlie’s
accelerating motion, |W 〉ABC reduces to

|W 〉ABC → 1√
3 cosh r

∞∑
n=0

tanhn r

[√
n + 1

cosh r
|00n + 1〉

+ |01n〉 + |10n〉
]

⊗ |n〉II , (3.2)

where |abc〉 = |ab〉MAB ⊗ |c〉I . Then, a partial trace over |ψ〉II

transforms the W state into the following mixed state:

ρW = 1

3 cosh2 r

∞∑
n=0

tanh2n r

[
n + 1

cosh2 r
|00n + 1〉〈00n + 1| + |01n〉〈01n| + |10n〉〈10n| +

√
n + 1

cosh r
{|00n + 1〉〈01n| + |01n〉

× 〈00n + 1| + |00n + 1〉〈10n| + |10n〉〈00n + 1|} + {|01n〉〈10n| + |10n〉〈01n|}
]
. (3.3)

Now, let us compute two-tangles. Since ρAB
W ≡ trCρW

becomes

ρAB
W = 1

3 (|00〉〈00|+|01〉〈01|+|10〉〈10|+|01〉〈10|+|10〉〈01|),
(3.4)

it is easy to show that

NAB = ∣∣∣∣(ρAB
W

)TA
∣∣∣∣ − 1 =

√
5 − 1

3
. (3.5)

Thus, NAB is independent of Charlie’s acceleration. In order
to compute NAC we should derive ρAC

W , which can be easily
derived from ρW by taking a partial trace over Bob’s qubit.
Then, it is straightforward to show that

(
ρAC

W

)TA
(
ρAC

W

)TA† =
∞∑

n=0

[an|0n〉〈0n| + bn|1n〉〈1n| + cn{|0n〉

× 〈1n + 1| + |1n + 1〉〈0n|}], (3.6)
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where

an = tanh4n r

9 cosh4 r

(
1 + n + 1

cosh2 r
+ 2n

sinh2 r
+ n2

sinh4 r

)
,

bn = tanh4n r

9 cosh4 r

(
1 + n cosh2 r

sinh4 r

)
, (3.7)

cn =
√

n + 1 tanh4n r

9 cosh5 r

(
1 + tanh2 r + n

sinh2 r

)
.

Although the matrix representation of (ρAC
W )TA (ρAC

W )TA† is
not a diagonal one, we can compute the eigenvalues of it
analytically by choosing the order of basis appropriately. Then,
the nonvanishing eigenvalues of (ρAC

W )TA (ρAC
W )TA† are

{b0,λ̃
±|n = 0,1,2, . . .}, (3.8)

where

λ̃± = 1
2

[
(an + bn+1) ± √

(an − bn+1)2 + 4c2
n

]
. (3.9)

Therefore, NAC becomes

NAC ≡ ∣∣∣∣(ρAC
W

)TA
∣∣∣∣ − 1 =

√
b0 +

∞∑
n=0

(
√

λ̃+
n +

√
λ̃−

n ) − 1.

(3.10)

Since ρBC
W ≡ trAρW is equal to ρAC

W , it is easy to show that
NBC = NAC .

The r dependence of the two-tangles is plotted in Fig. 3.
When Charlie’s acceleration is zero, all two-tangles become
(
√

5 − 1)/3 ∼ 0.412, which is two-tangle in the rest frame.
As shown in Eq. (3.5) NAB is independent of r . This is
because the contribution of Charlie’s qubit averages out
via the partial trace in ρAB

W . However, NAC and NBC

decrease with increasing r . This implies that the effect of
Charlie’s acceleration is contributed to these two two-tangles.
The remarkable fact is that NAC and NBC become almost
zero at r � 0.89. This brings back a concurrence [22],
entanglement measure for bipartite quantum state, which
is defined as max(λ1 − λ2 − λ3 − λ4,0), where λi are the
eigenvalues, in decreasing order, of the Hermitian operator√√

ρ(σy ⊗ σy)ρ∗(σy ⊗ σy)
√

ρ.
Now, let us compute one-tangles. In order to compute

NA(BC) we should derive ρ
TA

W , which can be read directly
from ρW by taking the partial transposition for Alice’s
qubit. Then, after some algebra, it is straightforward to
show that

(
ρ

TA

W

)(
ρ

TA

W

)† = lim
N→∞

N∑
n=0

[ān|00n〉〈00n| + b̄n|01n〉〈01n| + c̄n|10n〉〈10n| + d̄n|11n〉〈11n| + f̄n{|00n+ 1〉〈01n| + |01n〉〈00n+ 1|}

+ ḡn{|00n〉〈10n+ 1| + |10n+ 1〉〈00n|} + h̄n{|00n〉〈11n| + |11n〉〈00n|} + j̄n{|01n〉〈10n+ 2| + |10n+ 2〉〈01n|}
+ k̄n{|01n〉〈11n+ 1| + |11n+ 1〉〈01n|} + 	̄n{|10n+ 1〉〈11n| + |11n〉〈10n+ 1|}], (3.11)

where

ān = tanh4n r

9 cosh4 r

(
1 + n + 1

cosh2 r
+ n2 + n cosh2 r

sinh4 r

)
,

b̄n = tanh4n r

9 cosh4 r

(
1 + n + 1

cosh2 r

)
,

c̄n = tanh4n r

9 cosh4 r

(
1 + n cosh2 r

sinh4 r

)
,

d̄n = tanh4n r

9 cosh4 r
,

f̄n =
√

n + 1 tanh4n r

9 cosh5 r

(
1 + n + 1

cosh2 r

)
,

(3.12)

ḡn =
√

n + 1 tanh4n r

9 cosh5 r

(
tanh2 r + n

sinh2 r

)
,

h̄n = n tanh4n r

9 cosh4 r sinh2 r
,

j̄n =
√

(n + 1)(n + 2) tanh4n r

9 cosh8 r
sinh2 r,

k̄n =
√

n + 1 tanh4n r

9 cosh7 r
sinh2 r,

	̄n =
√

n + 1 tanh4n r

9 cosh5 r
.

It does not seem to be possible to compute the eigenvalues
of (ρTA

W )(ρTA

W )† analytically. Thus, we adopt the following
numerical procedure for the calculation of the eigenvalues.
First, we take N = 256 in Eq. (3.11) and compute numerically
η(N,r) = ∑N

i=1

√
λi − 1, where λi are the eigenvalues of

FIG. 3. (Color online) The r-dependence of the two-tangles when
Alice, Bob, and Charlie share the W state initially. This figure shows
that the two-tangle NAB is independent of Charlie’s acceleration.
However NAC and NBC decrease with increasing r and become zero
at r � 0.89.
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(ρTA

W )(ρTA

W )† and N = 256. The large N behavior of η(N,r)
can be computed by a numerical fitting method using η(256,r).
Since NA(BC) = limN→∞ η(N,r), the r dependence of NA(BC)

can be computed by following this procedure. The result of the
numerical calculation is shown in Fig. 4. As Fig. 4 exhibits,
NA(BC) becomes 2

√
2/3 ∼ 0.943 at r = 0. This is a value of

one-tangle for the W state in the rest frame. As expected,

it monotonically decreases with increasing r , but does not
completely vanish at r → ∞ limit. In this limitNA(BC) reduces
to NA(BC) ∼ 0.659, which is smaller than

√
π/2 ∼ 0.886, the

corresponding value for the GHZ state.
In order to compute NB(AC) we should derive (ρTB

W )(ρTB

W )†,
which can be derived straightforwardly from ρ

TB

W . The final
expression of (ρTB

W )(ρTB

W )† is

(
ρ

TB

W

)(
ρ

TB

W

)† = lim
N→∞

N∑
n=0

[ān|00n〉〈00n| + c̄n|01n〉〈01n| + b̄n|10n〉〈10n| + d̄n|11n〉〈11n| + f̄n{|00n+ 1〉〈10n| + |10n〉〈00n+ 1|}

+ ḡn{|00n〉〈01n+ 1| + |01n+ 1〉〈00n|} + h̄n{|00n〉〈11n| + |11n〉〈00n|} + 	̄n{|01n+ 1〉〈11n| + |11n〉〈01n+ 1|}
+ j̄n{|01n + 2〉〈10n| + |10n〉〈01n + 2|} + k̄n{|10n〉〈11n + 1| + |11n + 1〉〈10n|}], (3.13)

where the coefficients are given in Eq. (3.12). Since (ρTB

W )(ρTB

W )† can be obtained from (ρTA

W )(ρTA

W )† by interchanging Alice’s qubit
and Bob’s qubit, the eigenvalues of (ρTB

W )(ρTB

W )† should be equal to those of (ρTA

W )(ρTA

W )†. Thus we have NB(CA) = NA(BC).
Finally, we compute NC(AB). Since (ρTC

W )(ρTC

W )† becomes

(
ρ

TC

W

)(
ρ

TC

W

)† =
∞∑

n=0

[ãn|00n〉〈00n| + b̃n{|01n〉〈01n| + |10n〉〈10n| + |01n〉〈10n| + |10n〉〈01n|} + c̃n{|00n〉〈01n + 1|

+ |01n + 1〉〈00n| + |00n〉〈10n + 1| + |10n + 1〉〈00n|}], (3.14)

where

ãn = tanh4n r

9 cosh4 r

(
2(n + 1)

cosh2 r
+ n2

sinh4 r

)
,

b̃n = tanh4n r

9 cosh4 r

(
2 + n cosh2 r

sinh4 r

)
, (3.15)

c̃n = tanh4n r

9 cosh4 r

(
2
√

n + 1 sinh2 r

cosh3 r
+ n

√
n + 1

sinh2 r cosh r

)
,

FIG. 4. (Color online) The r dependence of the one-tangles when
Alice, Bob, and Charlie share the W state initially. Like the case
of GHZ state, all one-tangles exhibit a decreasing behavior with
increasing r . This figure shows that while NC(AB) reduces to zero at
r → ∞ limit, other one-tangles do not completely vanish but go to
0.659 in this limit.

it is not difficult to compute the eigenvalues of (ρTC

W )(ρTC

W )†

analytically by choosing the order of the basis appropriately.
The final expression of the eigenvalues is

{2b̃0,�
±
n |n = 0,1,2, . . .}, (3.16)

where

�±
n = 1

2

[
(ãn + 2b̃n+1) ±

√
(ãn − 2b̃n+1)2 + 8c̃2

n

]
. (3.17)

Therefore, NC(AB) is given by

NC(AB) =
√

2b̃0 +
∞∑

n=0

(
√

�+
n +

√
�−

n ) − 1. (3.18)

The r dependence of the one-tangles are plotted at Fig. 4.
Like the GHZ case, all one-tangles decrease with increasing
r . While NC(AB) goes to zero in r → ∞ limit, NA(BC) and
NB(CA) do not completely vanish but reduce to 0.659 in this
limit. This value is smaller than the corresponding remnant√

π/2 of the one-tangles for the GHZ state. As we commented
in the previous section, we do not know why the remnant of
NA(BC) = NB(CA) is 0.659.

The r dependence of π -tangle for W state is plotted in
Fig. 5. As expected, πA, πB , and πC decrease with increasing
r from 4(

√
5 − 1)/9 ∼ 0.55, which is a corresponding value

at r = 0. While πC goes to zero at r → ∞ limit, πA and πB

do not completely vanish in this limit, but reduce to 0.265.
For this reason πW , the π -tangle of the W state, becomes
0.176 when Charlie moves with respect to Alice and Bob with
infinite acceleration. The remnant 0.176 for the W state is
much smaller than the corresponding value π/6 ∼ 0.524 for
the GHZ state. We do not clearly understand why the remnant
of π -tangle for the W state is much smaller than that for
the GHZ state. We also do not understand why the tripartite
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π

π π

π π

FIG. 5. (Color online) The r dependence of the π -tangle when
Alice, Bob, and Charlie share the W state initially. Like the GHZ state,
the π -tangle πW exhibits a monotonically decreasing behavior with
increasing r and reduces to 0.176 at r → ∞ limit. Mathematically,
this is due to the fact that πA and πB become nonzero while πC

reduces to zero in this limit. The physical implications of this result
are discussed in Sec. IV.

entanglement is not zero even when Charlie approaches the
Rindler horizon.

IV. CONCLUSION

In this paper we consider tripartite entanglement when one
of the parties moves with uniform acceleration with respect
to other parties. The accelerating motion of the one party is
described by the Rindler coordinate. We adopt the π -tangle
as a measure of the tripartite entanglement solely due to its
calculational easiness.

Since the Unruh effect predicts that the information formed
in some region in Rindler space is leaked into the causally
disconnected region due to acceleration of one party, we expect
that the tripartite entanglement decreases with increasing
acceleration, and eventually reduces to zero at the infinite
acceleration limit like the bipartite entanglement [6]. Actual
calculation reveals the monotonically decreasing behavior of
the π -tangle with increasing acceleration. However, actual
calculation also shows that our expectation that the π -tangle
vanishes in the infinite acceleration limit is wrong. If, for

example, the three parties share the GHZ state initially, the
corresponding π -tangle decreases monotonically from 1 at
zero acceleration to π/6 ∼ 0.524 at infinite acceleration. If the
parties share the W state initially, the π -tangle also decreases
monotonically from 4(

√
5 − 1)/9 ∼ 0.55 at zero acceleration

to 0.176 at infinite acceleration. Thus, the π -tangle does not
completely vanish even if one of the parties approaches the
Rindler horizon.

The nonvanishing of the π -tangle at infinite acceleration
is a striking result. Since Rindler space-time is similar to the
Schwarzschild space-time, this result enables us to conjecture
that the tripartite entanglement does not completely vanish
even if one party falls into the event horizon of the black hole.
If so, some quantum-information processing such as tripartite
teleportation [23] can be performed between the inside and
outside of the black hole. Since, however, the Rindler horizon
is physically different from the event horizon, we should check
this conjecture explicitly by actual calculation. We would like
to revisit this issue in the near future.

Probably, the nonvanishing of the π -tangle at infinite
acceleration is due to the incomplete definition of the π -tangle
as a measure of the tripartite entanglement. Thus, it seems to
be interesting to repeat the calculation of this paper by making
use of the three-tangle. Since, however, the computation of the
three-tangle requires the optimal decomposition of the given
mixed state, its calculation is much more difficult than that
of the π -tangle. In order to explore this issue, therefore, we
should develop analytical and numerical techniques for the
computation of the three-tangle.

Since recent string and brane-world theories predict the
extra dimensions in space-time, it seems to be also of interest
to study the effect of the extra dimensions in the degradation
phenomena of bipartite and tripartite entanglements. Another
interesting issue is to explore the effect of the black hole’s
rotation in the bipartite and tripartite entanglements. There are
many interesting questions related to this issue. For example,
it would be interesting to examine the relation between super-
radiance and degradation of entanglement. We hope to explore
these issues in the future.
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