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Abstract

Entanglement for Multipartite Quantum States

Eylee Jung

(Dept. of Physics)

Advisor Dae Kil Park

In this thesis we have reviewed the recent results on the pure- and mixed-state en-

tanglement. We have shown explicitly that the geometric and Groverian entanglement

measures for the three-qubit pure states can be expressed in terms of some geometric

quantities of polygons constructed by the parameters of given quantum state. The ge-

ometric interpretation of the quantum entanglement may shed light on the profound

meaning on the multipartite entanglement. We have discussed this issue in detail.

For mixed-state entanglement we have developed the calculational technique for the

residual entanglement or three-tangle by considering the rank-3 mixture composed of

Greenberger-Horne-Zeilinger (GHZ)-, W- and flipped W-states. We also have shown

that in addition to W state the three-tangle does not properly quantify the tripartite

entanglement of mixed state composed of only GHZ-states. This means that some

mixtures composed of only GHZ-states can be expressed in terms of only W-states.

This surprising result may shed light on the fact that the set of the mixed W-states

is not of measure zero in the set of whole three-qubit mixed states.
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Chapter 1

Introduction

Research into entanglement of quantum states has a long history, and approximately

initiated from the beginning of quantum mechanics[1, 2]. Especially, the famous paper

written by Einstein, Podolsky, and Rosen (EPR) discussed carefully the validity of

the quantum mechanics as a theory which can explain the physical reality. They

asserted that entanglement of the quantum states makes the quantum mechanics to

be non-local theory and therefore, it is not a complete theory. The EPR’s claim is

based on their view of nature that the theory which can explain the laws of nature

should be local. Nowadays, their argument is known as EPR paradox and still the

validity of the paradox is intensively discussed by many theoretical and experimental

scientists.

After 30 years from the EPR’s original paper J. S. Bell re-examined the EPR

argument. Firstly, he accepted the EPR’s argument that quantum description of the

physical reality is not complete. In order to make the quantum theory local, therefore,

he developed a concept of the local hidden variable (LHV). Bell proved that the

introduction of LHV imposes a constraint on statistical correlation. Nowadays this

constraint is called Bell’s inequality[3, 4]. Therefore, any local theory should obey

the Bell’s inequality, but suitable measurements for some entangled quantum states

does not obey the Bell’s inequality. Therefore, the agreement or disagreement of the

Bell’s inequality becomes a cornerstone of the local or non-local theories.

Later, violation of the Bell’s inequalities has been demonstrated using the po-

larization of photons[5, 6]. It turned out that experimental results are excellently in

agreement with the predictions of quantum mechanics. Apart from photon’s polar-

ization the violation of Bell’s inequalities has been demonstrated by using photon’s
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CHAPTER 1. INTRODUCTION

entanglement based on position and time[7, 8], phase and momentum[9], and orbital

angular momentum[10]. Also, there were several more experiments, which have not

used photon but used proton[11] and atoms[12]. It is worthwhile noting that to date

no experiment has been loophole free, so that technically, EPR argument on local

realism has not been ruled out experimentally[13, 14].

Although entanglement has been studied for a long time, a flurry of much activ-

ities on the entanglement was initiated from early 80’s in the context of quantum

information theories[15]. In 1982 and 1986 R. Feynman suggested a computer which

performs computation with obeying the quantum mechanical rules[16, 17]. This com-

puter is now called quantum computer. At the same time Bennett and Brassard[18]

suggested the quantum cryptographic scheme, which is much more secure than the

classical cryptography against the eavesdropping. This is nowadays called BB84 pro-

tocol.

The quantum computation and quantum cryptography are two major applica-

tions of the quantum information processing. Entanglement of the quantum states

plays an important role in the quantum information processing. In early 90’s it was

shown[19] that entanglement of the quantum states1 makes it possible to teleport an

unknown quantum state to the remote receiver. It also makes it possible to send two

classical bits by sending only one quantum bit, say qubit[20]. These two phenomena

are nowadays called quantum teleportation and superdense coding respectively and

they are basic tools for the quantum information processing. In 1991 Ekert[21] sug-

gested a new quantum cryptographic protocol, which fully uses the entanglement of

the two qubit states unlike BB84 protocol. In 1994 Shor[22] developed a factoring

quantum algorithm by making use of the entanglement, which factors a huge number

within a polynomial time. In addition, in 1996 Grover[23, 24] developed the quan-

tum search algorithm, which enables us to find a card from arbitrary N cards within√
N steps. Recently, Shor’s factoring algorithm is experimentally realized by making

use of NMR[25] and optical[26, 27] set-up. The physical implementation of Grover’s

search algorithm also has been made by making use of NMR[28, 29], optical[30] and

cavity QED[31] set-up.

From the theoretical ground Vidal[32] has shown that entanglement of the given

quantum states is a genuine physical resource, which is responsible for the speed-

up of the quantum computer. To understand more deeply the general properties

of the entanglement one may need to quantify the entanglement[33]. Quantification

of entanglement can make transition from merely quantum mechanical “notion” to

1this is usually called quantum channels on the contrary to classical channels such as telephone

line or broadcasting.
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physical real quantity. Such quantities are called entanglement measure.

The most important property which the entanglement measure should have is

the monotonicity under the local operation and classical communication (LOCC)[34].

Following the axioms given in Ref.[33] many entanglement measures were constructed

such as relative entropy[35], entanglement of distillation[36] and formation[37, 38, 39,

40], geometric measure[41, 42, 43, 44], Schmidt measure[45] and Groverian measure[46].

Entanglement measures are used in various branches of quantum mechanics. Espe-

cially, recently, they are used to try to understand Zamolodchikov’s c-theorem[47]

more profoundly. It may be an important application of the quantum information

techniques to understand the effect of renormalization group in field theories[48].

Recent research into entanglement can be summarized as following.

1.0.1 Separability Criterion

It is important to determine whether a given quantum state is separable or entangled.

Until now several criteria are developed such as positive partial transpose (PPT)

criterion[49, 50], reduction criterion[51], and majorization criterion[52].

The PPT criterion can be summarized as follows:

if the given quantum state ρ is separable, its partial transpose, say ρTA is positive

operator.

It was shown in Ref.[50] that for bipartite systems the converse (i.e. if ρTA ≥ 0,

then ρ is separable) is true only for low-dimensional systems, namely for composite

states of dimension 2×2 or 2×3. For higher dimensions it is only necessary condition

because the existence of entangled states has been shown[53]. Such states are called

bound entangled states[54].

The reduction criterion can be summarized as follows:

if the given quantum states ρ is separable, then ρA⊗11−ρ ≥ 0 and ρB⊗11−ρ ≥ 0,

where ρA = trBρ and ρB = trAρ.

Like the PPT criterion the reduction criterion is a necessary and sufficient con-

dition only for 2 × 2 or 2 × 3, and necessary condition otherwise.

The majorization criterion can be summarized as follows:

if a given quantum state ρ is separable, then λ↓ρ ≺ λ↓ρA
and λ↓ρ ≺ λ↓ρB

.

Here, λ↓ρ denotes the vector consisting of the eigenvalues of ρ, in decreasing order

and a vector x↓ is majorized by a vector y↓, denoted as x↓ ≺ y↓, when
∑k

j=1 x
↓
j ≤∑k

j=1 y
↓
j holds for k = 1, 2, · · · , d− 1 and the equality holds for k = d, with d being

the dimension of vector. The majorization criterion is only necessary, not a sufficient

condition for separability.
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CHAPTER 1. INTRODUCTION

Besides these criteria there are non-operational separability criteria such as pos-

itive map[50] and entanglement witnesses[55].

1.0.2 Entanglement Distillation

As mentioned before entanglement is a genuine physical resource for the quantum

information processing. For example, quantum teleportation with noisy quantum

channel makes the fidelity[56] decrease, which reduces the teleportation processing

imperfect[57]. Since the effect of the environment, which prevents the quantum sys-

tem from being isolated, is inevitable, one has to find a method which overcomes the

noises, at least in principle. This method is called entanglement distillation.

So far there are two kinds of the distillation protocol. First one is a recurrence

(or IBM) protocol developed in Ref.[37, 58]. Second method is a Quantum Privacy

Amplification (or Oxford) protocol developed in Ref.[59]. Even if the methods are dif-

ferent in the detailed techniques, the overall method is identical: given several copies

of the non-maximally entangled states, retrieve the small number of the maximally

entangled states via LOCC and appropriate measurements. The distillation protocols

are nicely reviewed in Ref.[60].

1.0.3 Classification of quantum states

There is an important question in the context of the distillation process. Given an

entangled quantum state, can its entanglement be distilled? In general, this question

is still unsolved. However, a necessary and sufficient criterion for distillability was

proved in Ref.[61]. The condition can be summarized as follows:

Te state ρ is distillable iff there exists |ψ2〉 = a1|e1〉|f1〉 + a2|e2〉|f2〉 such that

〈ψ2|(ρTA)⊗n|ψ2〉 < 0 for some n.

In other words, if for a certain n copies the partial transpose of the total state has

a negative eigenvalue with some vector of Schmidt rank 2, then ρ can be distillable

(one says: ρ is n-distillable), and vice versa.

From this condition it follows immediately that a state with a PPT-entangled

states cannot be distilled: if ρTA ≥ 0, then (ρTA)⊗n ≥ 0, and thus PPT-entangled

states are undistillable. This is why the entanglement of the PPT-entangled states is

called “bound entanglement”.

Besides the PPT-entangled states are there any other undistillable entangled

quantum states? This question is also unsolved yet. If such states exist, we call

them non-positive partial transpose (NPT)-entangled states. For higher dimensions

a strong conjecture that NPT-entangled states exist[62, 63]. Then, the set of the

4
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Figure 1.1: Characterization of the quantum states in terms of the distillability.

quantum states can be classified in terms of the distillability or undistillability as

Fig. 1.

In this thesis we will present the recent results on the analytic derivation of the

entanglement measures. In section II we will present three theorems, which plays

crucial role in the following calculations performed in the subsequent sections. This

section is based on Ref.[64]. In section III by making use of the theorems of the

previous section we compute the geometric (and/or Groverian) entanglement measure

for the 3-qubit generalized W-state[65] defined as |ψ〉 = a|100〉 + b|010〉 + c|001〉. It

is shown in this section that the geometric entangled measure of the W-state is

expressed by two different ways depending on the region of the parameter space.

First expression is expressed in terms of the largest coefficient α2 = max(a2, b2, c2),

and second one is expressed in terms of the circumradius of the triangle (a, b, c). This

section is based on Ref.[66]. In section IV we generalize section III by considering the

3-qubit state |ψ〉 = a|100〉+ b|010〉+ c|001〉+ d|111〉. It is shown that the geometric

measure for this state has two different expressions. As generalized W-state first

expression is expressed in terms of the largest coefficient α2 = max(a2, b2, c2, d2).

Second one is expressed in terms of the circumradius of the convexed quadrangle

(a, b, c, d). This section is based on Ref.[67]. In section V we use the classification

of the 3-qubit states suggested in Ref.[68]. Using the classification we compute the

geometric measures for states in Type I, II, and III, and re-express the results in terms

of the local unitary (LU)-invariants. This section is based on Ref.[69]. In section VI
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CHAPTER 1. INTRODUCTION

we try to extend the previous section by computing the geometric measure for the

higher qubit systems. In this section we compute the geometric measure for the

one-parametric n-qubit states

|Wn〉 = a|10 · · · 0〉 + a|01 · · · 0〉 + · · · + a|0 · · · 10〉 + q|0 · · · 01〉

and two-parametric 4-qubit W-state

|W4〉 = a|1000〉+ b|0100〉+ q|0010〉+ q|0001〉.

This section is based on Ref.[70].

From section VII we present the recent results on the entanglement of the mixed

states. After developing the calculational techniques for the concurrence of the arbi-

trary two-qubit mixed states by Wootters[38, 39], this technique is used to construct

the tripartite entanglement measure, so-called residual entanglement or three-tangle

in Ref.[71]. In fact, the three-tangle derived in Ref.[71] exactly coincides with the

modulus of a Cayley’s hyperdeterminant[72, 73] and is an invariant quantity under

the local SL(2,C) transformation[74, 75]. After six years from the construction of

the three-tangle in Ref.[71] Lohmayer et al[76] derived analytically the three-tangle

for the mixture of Greenberger-Horne-Zeilinger(GHZ)[77] and W[65] states defined

ρ = p|GHZ〉〈GHZ| + (1 − p)|W 〉〈W | (1.1)

where

|GHZ〉 =
1√
2

(|000〉 + |111〉) |W 〉 =
1√
3

(|100〉+ |010〉+ |001〉) . (1.2)

It was shown that in Ref.[76] that the three-tangle for the quantum state ρ given

in Eq.(1.1) has three different expressions depending on the parameter p. It was

also shown that the three-tangle and concurrences for the sub-systems satisfy the

monogamy inequality

τ3 + C2
AB + C2

AC ≤ C2
A(BC) (1.3)

where τ3 is a three-tangle and, C2
AB, C2

AC and C2
A(BC) are concurrences for the cor-

responding sub-systems. The authors in Ref.[78] extended the results of Ref.[76] by

computing the three-tangle for the mixture of the generalized GHZ and generalized

W states as following:

ρ(p) = p|gGHZ〉〈gGHZ|+ (1 − p)|gW 〉〈gW | (1.4)

where

|gGHZ〉 = a|000〉 + b|111〉 |gW 〉 = c|001〉+ d|010〉 + f |100〉. (1.5)

6



In Ref.[79] the general properties of the three-tangle are more deeply discussed by

introducing two key concepts, zero-polytope and characteristic curve. Therefore, the

result of Ref.[79] can be used to check whether or not the calculational result for the

three-tangle is correct.

In section VII we compute the three-tangle for the rank-3 mixture, i.e. mixture

of GHZ, W, and flipped-W states. In this section we also provide a technique, which

determines whether or not an arbitrary rank-3 state has vanishing three-tangle by

making use of the Bloch sphere S8 of the qutrit system. This section is based on

Ref.[80]. In section VIII we show that the three tangle does not properly quantify

the tripartite entanglement of some particular mixture composed of only GHZ states.

This is a surprising result, which has not been expected before. This fact may shed

light on the physical reason why the set of the mixed W-states is not of measure

zero in the set of whole 3-qubit mixed states, which was discussed in Ref.[81]. This

section is based on Ref.[82]. In section IX we give a brief conclusion and direction of

future research.
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Part I

Entanglement for pure states
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Chapter 2

Reduced state uniquely

defines the Groverian

measure of the original pure

state

Quantum theory opens up new possibilities for information processing and commu-

nication and the entanglement of a quantum state allows to carry out tasks, which

could not be possible with a classical system [83, 37, 36, 33, 84, 39, 85, 86]. It plays

a pivotal role for exponential speedup of quantum algorithms [32], teleportation [19]

and superdense coding [20].

The quantum correlation is the essence of the entanglement and it cannot be

created by local operations and classical communication (LOCC) alone. Analysis of

multi-particle entanglement provides insight into the nature of quantum correlation.

However, current situation is far from satisfaction.

Linden et al. revealed that almost every pure state of three qubits is completely

determined by its two-particle reduced density matrices [87]. In other words, we

cannot get much new information from the given pure three-qubit state if the reduced

two-qubit states are known. The case of pure states of any number n of parties

was considered in Ref.[88] and it was shown that the reduced states of a fraction

of the parties uniquely specify the quantum state. One may consider more general

and open questions of vital importance: how much information is contained in any

11



CHAPTER 2. REDUCED STATE UNIQUELY DEFINES THE GROVERIAN

MEASURE OF THE ORIGINAL PURE STATE

reduced (n−1)-qubit state? How do we use this information to convert the nonlinear

eigenproblem of entanglement measure calculation to the linear eigenproblem? Is

there any physically relevant connection between the pure n-party states which have

LU-equivalent (n−1)-party reduced states? Does such a connection impose an upper

bound for entanglement measure?

Groverian entanglement measure G [46] gives concise answers to all these ques-

tions. It is an entanglement measure defined in operational terms, namely, how well

a given state serves as the input to Grover’s search algorithm [24]. Groverian mea-

sure depends on maximal success probability Pmax and is defined by the formula

G(ψ) =
√

1 − Pmax. The maximal success probability is the overlap of a given state

with the nearest separable state. The same overlap defines Geometric measure of

entanglement introduced earlier as an axiomatic measure[41, 42, 43]. In this view

Groverian measure gives an operational treatment of the axiomatic measure and is

a good tool to investigate the above-mentioned questions. In the following we will

consider only the maximal success probability and our conclusions are valid for both

Groverian and Geometric measures.

Surprisingly enough, any reduced state resulting from a partial trace over a single

qubit suffices to find Pmax of the original pure state. For example, the entanglement

of three-qubit pure state is completely understood from the two-qubit mixed state re-

duced from the original pure state. Since bipartite systems, regardless mixed or pure,

always give a linear eigenproblem, this fact enables us to obtain analytic expressions

of Groverian entanglement measures for pure three qubit states.

It is well-known that entanglement measures are invariant under local unitary

transformations [33, 89, 90, 91]. However, LU-equivalent condition is not the only

one for the same Groverian entanglement measure. In fact, if two pure states have

LU-equivalent reduced states which are obtained by taking partial trace once, it turns

out that they have same entanglement measures. Owing to this the lower bound for

Pmax is derived. However, it is not reachable for three and higher qubit states and,

therefore, is not precise.

In Section 2.1 we derive a formula connecting Groverian measure of a pure state

and its reduced density matrix. In Section 2.2 we establish a lower bound for Grove-

rian measure. In Section 2.3 we present analytic expressions for the maximal success

probability that reflect main features of both measures. In Section 2.4 we make con-

cluding remarks of this chapter.

12



2.1. GROVERIAN MEASURE IN TERMS OF REDUCED DENSITIES

2.1 Groverian measure in terms of reduced densi-

ties

We consider a pure n-qudit state |ψ〉. The maximum probability of success is defined

by

Pmax(ψ) = max
q1q2...qn

|〈q1q2 . . . qn|ψ〉|2, (2.1)

where |qk〉’s are pure single qudit normalized states. Our intention is to derive a

formula which connects the maximum probability of success and (n−1)-qudit reduced

states. In general, reduced states are mixed states and are described by density

matrices. Hence we express the maximum probability of success in terms of density

operators right away. We will use the notation ρ for the state |ψ〉 and ̺ for the pure

single qudit state density operators, respectively. Eq.(2.1) takes the form

Pmax(ρ) = max
̺1̺2...̺n

tr (ρ ̺1 ⊗ ̺2 ⊗ · · · ⊗ ̺n) . (2.2)

Theorem 1. Any (n− 1)-qudit reduced state uniquely determines the Groverian

and Geometric measures of the original n-qudit pure state.

Proof. Define a single qudit state |χ〉 by the formula

|χ〉 = 〈q1q2 . . . q̂k . . . qn|ψ〉, (2.3)

where ̂means exclusion. Obviously

|〈q1q2 . . . qn|ψ〉|2 = |〈qk|χ〉|2 = tr(|χ〉〈χ|̺k). (2.4)

The absolute value of the inner product |〈qk|χ〉| is maximum when qk = |χ〉/
√
〈χ|χ〉

and therefore

max
̺k

tr(|χ〉〈χ|̺k) = 〈χ|χ〉 = tr (|χ〉〈χ|) . (2.5)

Denote by ρ(k̂) the reduced state resulting from a partial trace over k-th qudit,

that is ρ(k̂) = trkρ(ψ). From this definition it follows the identity

tr(|χ〉〈χ|) = tr
(
ρ(k̂)̺1 ⊗ ̺2 ⊗ . . . ̺̂k . . .⊗ ̺n

)
. (2.6)

Owing to this identity Eq.(2.5) can be rewritten as

max
̺k

tr
(
ρ ̺1 ⊗ ̺2 ⊗ . . .⊗ ̺n

)
= tr

(
ρ(k̂)̺1 ⊗ ̺2 ⊗ . . . ̺̂k . . .⊗ ̺n

)
. (2.7)
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Both sides of the Eq.(2.7) must have the same maximum and this is the proof of

the theorem.

Since the r.h.s. of Eq.(2.7) contains the reduced density operator trk ρ = ρ(k̂)

which is generally mixed state, the next maximization is nontrivial.

Eq.(2.7) does not mean that a pure state and its once reduced state have equal

Groverian measures. One can not maximize the mixed state density matrix over

product states to find the entanglement measure because the resulting measure is

not an entanglement monotone[46, 43, 92].

Eq.(2.7) connects directly the maximum probability of success with the reduced

density operator

Pmax(ρ) = max
̺1̺2...c̺k...̺n

tr
(
ρ(k̂)̺1 ⊗ ̺2 ⊗ . . . ̺̂k . . .⊗ ̺n

)
. (2.8)

In fact, Theorem1 is true for any entanglement measure. Consider an (n-1)-qudit

reduced density matrix that can be purified by a single qudit reference system. Let

|ψ′〉 be any joint pure state. All other purifications can be obtained from the state

|ψ′〉 by LU-transformations U ⊗ 11⊗(n−1) where U is a local unitary matrix acting on

single qudit and 11 is a unit matrix. Since any entanglement measure must be invariant

under LU-transformations, it must be the same for all purifications independently of

U . Hence the reduced density matrix ρ determines any entanglement measure on the

initial pure state.

However, there is a crucial difference. In the case of Groverian measure the proof

expresses entanglement measure by the reduced density matrix directly. As will be

explained in Section IV, Eq.(2.8) is a simple and effective tool for calculating three-

qubit entanglement measure. No such formula is known for other measures and gen-

eral proof for other measures has limited practical significance.

Theorem 2. If two pure n-qudit states have LU equivalent (n− 1)-qudit reduced

states, then they have equal Groverian and Geometric entanglement measures.

Proof. Assume that the density matrices of pure states are ρ and ρ′ and corre-

sponding maximum probabilities of success are Pmax and P ′
max. Suppose the local

unitary transformation U1 ⊗ U2 ⊗ · · · ⊗ Un−1 maps ρ′(k̂′) = trk′ρ′ to ρ(k̂) = trkρ as

following:

ρ(k̂) =
(
U1 ⊗ U2 ⊗ · · · ⊗ Un−1

)
ρ′(k̂′)

(
U1 ⊗ U2 ⊗ · · · ⊗ Un−1

)+
, (2.9)

where superscript + means hermitian conjugate. The trace with any complete prod-

uct ̺1 ⊗ ̺2 ⊗ · · · ⊗ ̺n−1 state gives
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tr
(
ρ(k̂)̺1 ⊗ ̺2 ⊗ · · · ⊗ ̺n−1

)
= tr

(
ρ′(k̂′)̺′1 ⊗ ̺′2 ⊗ · · · ⊗ ̺′n−1

)
, (2.10)

where ̺′k = Uk+̺kUk are single qubit pure states too. Let’s choose the product

state that maximizes the l.h.s. According to Eq.(2.8) l.h.s is Pmax and therefore

Pmax ≤ P ′
max. Similarly P ′

max ≤ Pmax, therefore Pmax = P ′
max.

2.2 Lower bound for multi-qubit systems

Theorem1 sets a clear lower bound for the maximum probability of success.

Below A is an arbitrary 2× 2 hermitian matrix, r is a unit real three-dimensional

vector and components of the vector σ are Pauli matrices. The trace of the product

of matrices A and r ·σ can be presented as a scalar product of vectors r and tr(Aσ).

The scalar product of two real vectors with the constant modules is maximal when

vectors are parallel. Consequently, we have

max
r2=1

tr (Ar · σ) = |tr(Aσ)| =
√

(trA)2 − 4 detA (2.11)

and the positive root of radicals is understood.

An arbitrary density matrix ̺ for a pure state qubit may be written as ̺ =

1/2 (11 + r · σ), where and r is a unit real vector. Then Eq.(2.11) can be rewritten as

max
̺

tr (A̺) =
1

2

(
trA+

√
(trA)2 − 4 detA

)
. (2.12)

From Eq.(2.12) it follows that

max
̺

tr (A̺) ≥ 1

2
(trA) . (2.13)

We define 2 × 2 matrix Mn−1 by formula

Mn−1 = tr1,2,...,n−2

(
ρ(n̂)̺1 ⊗ ̺2,⊗ · · ·̺n−2 ⊗ 11

)
. (2.14)

where trace is taken over (1,2,...,n-2)-qubits. Eq.(2.8) takes the form

Pmax = max
̺1̺2···̺n−1

tr(Mn−1̺
n−1), (2.15)

where tr means trace over (n-1)-qubit. Eq.(2.13) gives
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Pmax ≥ 1

2
max

̺1̺2···̺n−2
trMn−1 =

1

2
max

̺1̺2···̺n−2
tr
(
ρ(n̂)̺1 ⊗ ̺2 ⊗ · · · ̺n−2 ⊗ 11

)
, (2.16)

where tr in rhs of Eq.(2.16) means trace over all qubits.Thus inequality (2.13) suggests

a simple prescription: replace a pure qubit density matrix by unit matrix and add a

multiplier 1/2 instead. We use this prescription n−1 times, eliminate all single qubit

density operators step by step from Eq.(2.8) and obtain

Pmax ≥ 1

2n−1
. (2.17)

Note that this lower bound is valid only for pure states. The question at issue is

whether it is a precise limit or not. And if it is indeed the case, then what are the

pure states which have the lower bound of Pmax ? We will prove that this lower bound

is reached only for bipartite states.

Denote by ρk1k2···km the reduced density operator of qubits k1k2 · · · km, 1 ≤
m ≤ n− 1. Eq. (2.7) and (2.13) together yield

Pmax(ρ) ≥
1

2n−m−1
Pmax(ρ

k1k2···km). (2.18)

Note, Pmax(ρ
k1k2···km) does not define any entanglement measure as ρk1k2···km ’s

are mixed states. It is the maximal overlap of the mixed state with any product state

and we use it as intermediate mathematical quantity.

Lemma 2. If a pure state has limiting Geometric / Groverian entanglement

Pmax = 1/2n−1, then all its reduced states are completely mixed states.

Proof. Eq.(2.18) for m = 1 and Eq.(2.12) impose

Pmax ≥ 1

2n−1

(
1 +

√
1 − 4 det ρk

)
. (2.19)

The maximal probability of success reaches the minimal value if the square root

vanishes. Consequently, density matrices ρk must be multiple of a unit matrix ρk =

11/2 and thus all one-qubit reduced states are completely mixed. Then two qubit

density matrices ρk1k2 must have the form

ρk1k2 =
1

4

(
11 ⊗ 11 + gαβ σ

α ⊗ σβ
)
. (2.20)

where gαβ = tr(ρk1k2σα ⊗ σβ) is a 3 × 3 matrix with real entries. Hereafter summa-

tion for repeated three dimensional vector indices (α, β, γ · · · = 1, 2, 3) is understood
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unless otherwise stated. To reach the lower bound we must have equality instead of in-

equality in (2.18) and this condition imposes Pmax(ρ
k1k2) = 1/4 resulting in gαβ = 0.

Hence ρk1k2 = (1/4)11 ⊗ 11 and thus all two-qubit reduced states are completely

mixed. One can continue this chain of derivations by induction. Indeed, suppose all

m-qubit states (m < n) are completely mixed. Then (m+ 1)-qubit density matrices

ρk1k2···km+1 must have the form

ρk1k2···km+1 =
1

2m+1

(
11⊗m+1 + gα1α2···αm+1

σα1 ⊗ σα2 ⊗ · · · ⊗ σαm+1
)
, (2.21)

where

gα1α2···αm+1
= tr

(
ρk1k2···km+1σα1 ⊗ σα2 ⊗ · · · ⊗ σαm+1

)
. (2.22)

From Eq.(2.18) it follows that Pmax(ψ) takes its minimal value if Pmax(ρ
k1k2···km) =

1/2m. Eq.(2.21) is consistent with this condition if and only if the maximization of

the term of gα1α2···αm+1
σα1 ⊗ σα2 ⊗ · · ·σαm+1 yields zero. Then gα1α2···αm+1

= 0 and

therefore

ρk1k2···km+1 =
1

2m+1
11⊗m+1. (2.23)

Thus if allm-qubit reduced states are completely mixed then all (m+1)-qubit reduced

states are also completely mixed. On the other hand all one-qubit reduced state

are completely mixed. By induction all reduced states are completely mixed. The

induction stops at pure states. In contrast to mixed states, the maximization of the

term gα1α2···αn
σα1⊗σα2⊗· · ·σαn must yield unity for pure states as requires Eq.(2.7).

Lemma is proved.

Theorem 3. None of multi-qubit pure states except two-qubit maximally entan-

gled states satisfies the condition Pmax = 1/2n−1.

Proof. When n = 2, it is well-known that the EPR states and their LU-equivalent

class reach the lower bound, i.e. Pmax = 1/2. Now we would like to show that there

is no pure state with limiting Groverian measure for n = 3. Lemma 2 requires that

the density matrix with limiting Groverian measure should be in the form

ρ =
1

8

(
11⊗3 + gαβγσ

α ⊗ σβ ⊗ σγ
)
. (2.24)

Since ρ is a pure state density matrix, it must satisfy ρ2 = ρ. This condition leads

several constraints, one of which is

−igαβγgδκλǫαδδ′ǫβκκ′ǫγλλ′σδ′ ⊗ σκ′ ⊗ σλ′

= 6gαβγσ
α ⊗ σβ ⊗ σγ (2.25)
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where ǫαβγ is an antisymmetric tensor. Since this constraint cannot be satisfied for

real gαβγ , there is no pure state which has limiting Groverian measure at n = 3.

Now we will show that there is no pure state for n ≥ 4 too. Suppose there is

n-qubit state |ψ〉 such that all its reduced states are completely mixed. Choose a

normalized basis of product vectors |i1i2 · · · in〉 where the labels within ket refer to

qubits 1, 2, · · ·n in that order. The vector |ψ〉 can be written as a linear combination

|ψ〉 =
∑

i1i2···in

Ci1i2···in
|i1i2 · · · in〉 (2.26)

of vectors in the set. All reduced states of the state |ψ〉 are completely mixed if and

only if

∑

ikjk

δikjk
Ci1i2···in

C∗
j1j2···jn

=
1

2n−1
δi1j1δi2j2 · · · δ̂ikjk

· · · δinjn
, k = 1, 2, · · ·n. (2.27)

Note that normalization condition follows from above equation. Define n − 1 index

coefficients

Di1i2···in−1
=

√
2Ci1i2···in−10. (2.28)

Setting in = jn = 0 in Eq.(2.27) we get

∑

ikjk

δikjk
Di1i2···in−1

D∗
j1j2···jn−1

=
1

2n−2
δi1j1δi2j2 · · · δ̂ikjk

· · · δin−1jn−1
, k = 1, 2, · · ·n−1.

(2.29)

Hence the (n− 1)-qubit state

|φ〉 =
∑

i1i2···in−1

Di1i2···in−1
|i1i2 · · · in−1〉 (2.30)

exists and all its reduced states are completely mixed. The contraposition of it is

that if there is no pure state which has limiting Groverian measure at n = 3, it is

also true for n ≥ 4. Theorem3 is proved.

Thus, the lower bound of inequality (2.17) is unreachable for n ≥ 3. This seems

to mean that Eq.(2.17) is not a precise limit.
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2.3 Analytic expressions for maximum probability

of success

The maximization of the pure three qubit states over product states generally reduces

to nonlinear eigenvalue equations [43]. However, Eq.(2.8) converts it effectively into

linear eigenvalue equations. Thus, one can compute the entanglement measures for

wide range of three qubit states analytically. As an illustration consider one para-

metric W-type [65] three qubit state

|ψ〉 =
1√

1 + κ2 + κ4
(|100〉 + κ|010〉+ κ2|001〉), (2.31)

where κ is a free positive parameter. The calculation method is elaborated in Ref.[66]

and here we present only final results. In three different ranges of definition the

maximal success probability is differently expressed. In the first case Pmax is the

square of the first coefficient provided it is greater than 1/2:

Pmax =
1

1 + κ2 + κ4
, 0 < κ <

(√
5 − 1

2

)1/2

. (2.32)

In the second case Pmax is the square of the diameter of the circumcircle of the

acute triangle formed by three coefficients:

Pmax =
4κ6

(1 + κ2 + κ4)2(3κ2 − 1 − κ4)
,

(√
5 − 1

2

)1/2

≤ κ ≤
(√

5 + 1

2

)1/2

.

(2.33)

In the third case Pmax is the square of the third coefficient provided it is greater

than 1/2:

Pmax =
κ4

1 + κ2 + κ4
, κ >

(√
5 + 1

2

)1/2

. (2.34)

It is also possible to compute Pmax for Eq.(2.31) numerically[93]. For numerical

calculation we consider kth qubit as |qk〉 = cos θk|0〉 + eiϕk sin θk|1〉 with k = 1, 2, 3.

Since the coefficients of |ψ〉 are all real, we can put ϕk = 0 for all k and express Pmax

in a form

Pmax = max
θ1,θ2,θ3

|〈q1|〈q2|〈q3|ψ〉|2. (2.35)
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Figure 2.1: Pmax for Eq.(2.31) (Fig. 1 a) and Eq.(2.36) (Fig. 1 b). The solid lines

represent the analytical results of Pmax and the black dots are the numerical results.

This figures strongly support that our analytical results are perfect correct.

Thus numerical maximization over θ1, θ2 and θ3 directly yields Pmax. As shown

in Fig. 1(a) the numerical result (black dots) perfectly coincides with the analytic

results (solid lines) expresses in Eq.(2.32), (2.33) and (2.34).

Let us consider another one parametric state

|ψ〉 =
1√

1 + κ2 + κ4 + κ6

(
|100〉+ κ|010〉+ κ2|001〉 + κ3|111〉

)
. (2.36)

Again there are three cases. If four coefficients form a cyclic quadrilateral, then

Pmax = 4R2, where R is the circumradius of the quadrangle. Otherwise Pmax is the

square of the largest coefficient. In the first case Pmax is the square of first coefficient:

Pmax =
1

1 + κ2 + κ4 + κ6
, (2.37)

κ <
1

3

(
3

√
18

√
57 + 134 − 3

√
18

√
57 − 134 − 1

)1/2

≈ 0.685.

In the second case Pmax is the square of the circumcircle of the cyclic quadrangle

formed by four coefficients:
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Pmax =
8κ6

−1 + 2κ2 + κ4 + 8κ6 + κ8 + 2κ10 − κ12
, (2.38)

1

3
( 3

q
18

√
57 + 134 − 3

q
18

√
57 − 134 − 1)1/2 ≤ κ ≤ 1√

3
( 3

q
46 + 6

√
57 + 3

q
46 − 6

√
57 + 1)1/2.

In the third case Pmax is the square of the last coefficient:

Pmax =
κ6

1 + κ2 + κ4 + κ6
, (2.39)

κ >
1√
3

(
3

√
46 + 6

√
57 +

3

√
46 − 6

√
57 + 1

)1/2

≈ 1.46.

The function Pmax(k) and numerical results are shown in Fig. 1(b). Both figures

strongly show that our analytical expressions of Pmax perfectly coincide with the

numerical result.

2.4 Conclusions

Eq.(2.8) allows to calculate the maximal success probability for three qubit states

which are expressed as linear combinations of four given orthogonal product states

[67]. The answer is more complicated than a simple formula, but each final expression

of the measure has its own meaningful interpretation. Namely, Pmax can take the

following values(up to numerical coefficients):

• the square of the circumradius of the cyclic polygon formed by coefficients of

the state function,

• the square of the circumradius of the crossed figure formed by coefficients of

the state function,

• the largest coefficient.

Each expression has its own range of definition where they are applicable. Al-

though the above picture seems simple, the separation of the applicable domains is

highly nontrivial task. To make clear which of expressions should be applied for a

given state we refer to [67]. All our results on Groverian measure of three qubit pure

states are summarized in [69].

Eq.(2.8) gives nonlinear eigenvalue problem for four and higher qubit states and it

is natural to ask whether there is an extension of Eq.(2.8) that allows to find analytic
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results for four, five, or general n-qubits. Although we have no distinct results here,

but we have obtained some insight from the analysis of the information contained

in one and two qubit reduced states. Probably, it is possible to express the maximal

success probability in terms of one and two qubit reduced states in case of four qubit

pure states. Such formula, if it can be derived, will give linear equations for four

qubit pure states. However, situation is opposite in the case of five qubit states. The

method does now allow to convert the task to the linear eigenvalue problem and more

powerful tools are needed to calculate maximal success probability of general n-qubit

states.
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Chapter 3

Analytic expressions for

geometric measure of

three-qubit states

Entangled states have different remarkable applications and among them are quan-

tum cryptography [21, 94], superdense coding [20, 95], teleportation [19, 96] and the

potential speedup of quantum algorithms [97, 32, 98]. The entanglement of bipartite

systems is well-understood [37, 36, 39, 86], while the entanglement of multipartite

systems offers a real challenge to physicists. In contrast to bipartite setting, there is

no unique treatment of the maximally entangled states for multipartite systems. In

this reason it is highly difficult to formulate a theory of multipartite entanglement.

Another point which makes difficult to understand the entanglement for the multi-

qubit systems is mainly due to the fact that the analytic expressions for the various

entanglement measures is extremely hard to derive.

We consider pure three qubit systems [68, 99, 71, 87], although the entanglement

of mixed states attracts a considerable attention. For example, in recent experiment

[100] the tangle for general mixed states was evaluated, which has never been done

before. Three-qubit system is important in the sense that it is the simplest system

which gives a non-trivial effect in the entanglement. Thus, we should understand the

general properties of the entanglement in this system as much as possible to go further

more complicated higher qubit system. The three-qubit system can be entangled in

two inequivalent ways GHZ [101] and W, and neither form can be transformed into
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the other with any probability of success [65]. This picture is complete: any fully

entangled state is SLOCC equivalent to either GHZ or W.

Only very few analytical results for tripartite entanglement have been obtained

so far [102] and we need more light on the subject. This is our main objective and

we choose geometric measure of entanglement Eg [33, 41, 42, 43]. It is an axiomatic

measure [33, 89, 90, 91], is connected with other measures [103, 104] and has an

operational treatment. Namely, for the case of pure states it is closely related to the

Groverian measure of entanglement [46] and the latter is associated with the success

probability of Grover’s search algorithm [24] when a given state is used as the initial

state.

Geometric measure depends on entanglement eigenvalue Λ2
max and is given by

formula Eg(ψ) = 1−Λ2
max. For pure states the entanglement eigenvalue is equal to the

maximal overlap of a given state with any complete product state. The maximization

over product states gives nonlinear eigenproblem [43] which, except rare cases, does

not allow the complete analytical solutions.

Recently the idea was suggested that nonlinear eigenproblem can be reduced to

the linear eigenproblem for the case of three qubit pure states [64]. The idea is based

on theorem stating that any reduced (n − 1)-qubit state uniquely determines the

geometric measure of the original n-qubit pure state. This means that two qubit

mixed states can be used to calculate the geometric measure of three qubit pure

states and this will be fully addressed in this chapter.

The method gives two algebraic equations of degree six defining the geometric

measure of entanglement. Thus the difficult problem of geometric measure calcula-

tion is reduced to the algebraic equation root finding. Equations contain valuable

information, are good bases for the numerical calculations and may test numerical

calculations based on other numerical techniques [98].

Furthermore, the method allows to find the nearest separable states for three qubit

states of most interest and get analytic expressions for their geometric measures. It

turn out that highly entangled states have their own feature. Each highly entangled

state has a vicinity with no product state and all nearest product states are on the

boundary of the vicinity and form an one-parametric set.

In Section 3.1 we derive algebraic equations defining the geometric entanglement

measure of pure three qubit states and present the general solution. In Section 3.2 we

examine W-type states and deduce analytic expression for their geometric measures.

States symmetric under permutation of two qubits are considered in Section 3.3,

where the overlap of the state functions with the product states are maximized

directly. In last Section 3.4 we make concluding remarks of this chapter.
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3.1. ALGEBRAIC EQUATIONS.

3.1 Algebraic equations.

We consider three qubits A,B,C with state function |ψ〉. The entanglement eigenvalue

is given by

Λmax = max
q1q2q3

|〈q1q2q3|ψ〉| (3.1)

and the maximization runs over all normalized complete product states |q1〉 ⊗ |q2〉 ⊗
|q3〉. Superscripts label single qubit states and spin indices are omitted for simplicity.

Since in the following we will use density matrices rather than state functions, our

first aim is to rewrite Eq.(3.1) in terms of density matrices. Let us denote by ρABC =

|ψ〉〈ψ| the density matrix of the three-qubit state and by ̺k = |qk〉〈qk| the density

matrices of the single qubit states. The equation for the square of the entanglement

eigenvalue takes the form

Λ2
max(ψ) = max

̺1̺2̺3
tr
(
ρABC̺1 ⊗ ̺2 ⊗ ̺3

)
. (3.2)

An important equality

max
̺3

tr(ρABC̺1 ⊗ ̺2 ⊗ ̺3) = tr(ρABC̺1 ⊗ ̺2 ⊗ 113) (3.3)

was derived in [64] where 11 is a unit matrix. It has a clear meaning. The matrix

tr(ρABC̺1⊗̺2) is 2⊗2 hermitian matrix and has two eigenvalues. One of eigenvalues

is always zero and another is always positive and therefore the maximization of the

matrix simply takes the nonzero eigenvalue. Note that its minimization gives zero as

the minimization takes the zero eigenvalue.

We use Eq.(3.3) to reexpress the entanglement eigenvalue by reduced density

matrix ρAB of qubits A and B in a form

Λ2
max(ψ) = max

̺1̺2
tr
(
ρAB̺1 ⊗ ̺2

)
. (3.4)

We denote by s1 and s2 the unit Bloch vectors of the density matrices ̺1 and ̺2

respectively and adopt the usual summation convention on repeated indices i and j.

Then

Λ2
max =

1

4
max

s2
1
=s2

2
=1

(1 + s1 · r1 + s2 · r2 + gij s1is2j) , (3.5)

where
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r1 = tr(ρAσ), r2 = tr(ρBσ), gij = tr(ρABσi ⊗ σj) (3.6)

and σi’s are Pauli matrices. The matrix gij is not necessarily to be symmetric but

must has only real entries. The maximization gives a pair of equations

r1 + gs2 = λ1s1, r2 + gT s1 = λ2s2, (3.7)

where Lagrange multipliers λ1 and λ2 are enforcing unit nature of the Bloch vectors.

The solution of Eq.(3.7) is

s1 =
(
λ1λ211 − g gT

)−1
(λ2r1 + g r2) , (3.8a)

s2 =
(
λ1λ211 − gT g

)−1 (
λ1r2 + gT r1

)
. (3.8b)

Now, the only unknowns are Lagrange multipliers, which should be determined by

equations

|s1|2 = 1, |s2|2 = 1. (3.9)

In general, Eq.(3.9) give two algebraic equations of degree six. However, the solu-

tion (3.8) is valid if Eq.(3.7) supports a unique solution and this is by no means always

the case. If the solution of Eq.(3.7) contains a free parameter, then det(λ1λ211−ggT ) =

0 and, as a result, Eq.(3.8) cannot not applicable. The example presented in Section

III will demonstrate this situation.

In order to test Eq.(3.8) let us consider an arbitrary superposition of W

|W 〉 =
1√
3

(|100〉 + |010〉+ |001〉) (3.10)

and flipped W

|W̃ 〉 =
1√
3

(|011〉 + |101〉+ |110〉) (3.11)

states, i.e. the state

|ψ〉 = cos θ |W 〉 + sin θ |W̃ 〉. (3.12)

Straightforward calculation yields

r1 = r2 =
1

3
(2 sin 2θ i+ cos 2θ n) , (3.13a)
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g =
1

3




2 0 0

0 2 0

0 0 −1


 , (3.13b)

where unit vectors i and n are aligned with the axes x and z, respectively. Both

vectors i and n are eigenvectors of matrices g and gT . Therefore s1 and s2 are linear

combinations of i and n. Also from r1 = r2 and g = gT it follows that s1 = s2 and

λ1 = λ2. Then Eq.(3.8) for general solution give

s1 = s2 = sin 2ϕ i+ cos 2ϕn (3.14)

where

sin 2ϕ =
2 sin 2θ

3λ− 2
, cos 2ϕ =

cos 2θ

3λ+ 1
. (3.15)

The elimination of the Lagrange multiplier λ from Eq.(3.15) gives

3 sin 2ϕ cos 2ϕ = cos 2θ sin 2ϕ− 2 sin 2θ cos 2ϕ. (3.16)

Let us denote by t = tanϕ. After the separation of the irrelevant root t = − tan θ,

Eq.(3.16) takes the form

sin θ t3 + 2 cos θ t2 − 2 sin θ t− cos θ = 0. (3.17)

This equation exactly coincides with that derived in [43]. Since a detailed analysis

was given in Ref.[43], we do not want to repeat the same calculation here. Instead

we would like to consider the three-qubit states that allow the analytic expressions

for the geometric entanglement measure by making use of Eq.(3.7).

3.2 W-type states.

Consider W-type state

|ψ〉 = a|100〉 + b|010〉+ c|001〉, a2 + b2 + c2 = 1. (3.18)

Without loss of generality we consider only the case of positive parameters a, b, c.

Direct calculation yields

r1 = r1 n, r2 = r2 n, g =



ω 0 0

0 ω 0

0 0 −r3


 , (3.19)
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where

r1 = b2 + c2 − a2, r2 = a2 + c2 − b2, r3 = a2 + b2 − c2 (3.20)

and ω = 2ab. The unit vector n is aligned with the axis z. Any vector perpendicular

to n is an eigenvector of g with eigenvalue ω. Then from Eq.(3.7) it follows that the

components of vectors s1 and s2 perpendicular to n are collinear. We denote by m

the unit vector along that direction and parameterize vectors s1 and s2 as follows

s1 = cosαn+ sinαm, s2 = cosβ n+ sinβ m. (3.21)

Then Eq.(3.7) reduces to the following four equations

r1 − r3 cosβ = λ1 cosα, r2 − r3 cosα = λ2 cosβ, (3.22a)

ω sinβ = λ1 sinα, ω sinα = λ2 sinβ, (3.22b)

which are used to solve the four unknown constants λ1, λ2, α and β. Eq.(3.22b) impose

either

λ1λ2 − ω2 = 0 (3.23)

or

sinα sinβ = 0. (3.24)

First consider the case r1 > 0, r2 > 0, r3 > 0 and coefficients a, b, c form an acute

triangle. Eq.(3.24) does not give a true maximum and this can be understood as

follows. If both vectors s1 and s2 are aligned with the axis z, then the last term in

Eq.(3.5) is negative. If vectors s1 and s2 are antiparallel, then one of scalar products

in Eq.(3.5) is negative. In this reason Λ2
max cannot be maximal. Then Eq.(3.23) gives

true maximum and we have to choose positive values for λ1 and λ2 to get maximum.

First we use Eq.(3.22a) to connect the angles α and β with the Lagrange multi-

pliers λ1 and λ2

cosα =
λ2r1 − r2r3
ω2 − r23

, cosβ =
λ1r2 − r1r3
ω2 − r23

. (3.25)

Then Eq.(3.22b) and (3.23) give the following expressions for Lagrange multipliers

λ1 and λ2

λ1 = ω

(
ω2 + r21 − r23
ω2 + r22 − r23

)1/2

, (3.26a)
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λ2 = ω

(
ω2 + r22 − r23
ω2 + r21 − r23

)1/2

. (3.26b)

Eq.(3.7) allows to write a shorter expression for the entanglement eigenvalue

Λ2
max =

1

4
(1 + λ2 + r1 cosα) . (3.27)

Now we insert the values of λ2 and cosα into Eq.(3.27) and obtain

4Λ2
max = 1 +

ω
√

(ω2 + r21 − r23)(ω
2 + r22 − r23) − r1r2r3

ω2 − r23
. (3.28)

The denominator in above expression is multiple of the area S of the triangle

a, b, c

ω2 − r23 = 16S2. (3.29)

A little algebra yields for the numerator

ω
√

(ω2 + r21 − r23) + (ω2 + r22 − r23) − r1r2r3 (3.30)

= 16 a2b2c2 − ω2 + r23 .

Combining together the numerator and denominator, we obtain the final expres-

sion for the entanglement eigenvalue

Λ2
max = 4R2, (3.31)

where R is the circumradius of the triangle a, b, c. Entanglement value is minimal

when triangle is regular, i.e. for W-state and Λ2
max(W ) = 4/9 [93, 43].

Now consider the case r3 < 0. Since r3 + r1 = 2b2 ≥ 0, we have r1 > 0 and

similarly r2 > 0. Eq.(3.24) gives true maximum in this case and both vectors are

aligned with the axis z

s1 = s2 = n (3.32)

resulting in Λ2
max = c2. In view of symmetry

Λ2
max = max(a2, b2, c2), max(a2, b2, c2) >

1

2
. (3.33)

Since the matrix g and vectors r1 and r2 are invariant under rotations around axis

z the same properties must have Bloch vectors s1 and s2. There are two possibilities:
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i)Bloch vectors are unique and aligned with the axis z. The solution given by

Eq.(3.32) corresponds to this situation and the resulting entanglement eigenvalue

Eq.(3.33) satisfies the inequality

1

2
< Λ2

max ≤ 1. (3.34)

ii)Bloch vectors have nonzero components in xy plane and the solution is not

unique. Eq.(3.21) corresponds to this situation and contains a free parameter. The

free parameter is the angle defining the direction of the vector m in the xy plane.

Then Eq.(3.31) gives the entanglement eigenvalue in highly entangled region

4

9
≤ Λ2

max <
1

2
. (3.35)

Eq.(3.31) and (3.33) have joint curves when parameters a, b, c form a right tri-

angle and give Λ2
max = 1/2. The GHZ states have same entanglement value and it

seems to imply something interesting. GHZ state can be used for teleportation and

superdense coding, but W-state cannot be. However, the W-type state with right

triangle coefficients can be used for teleportation and superdense coding [105]. In

other words, both type of states can be applied provided they have the required

entanglement eigenvalue Λ2
max = 1/2.

3.3 Symmetric States.

Now let us consider the state which is symmetric under permutation of qubits A and

B and contains three real independent parameters

|ψ〉 = a|000〉+ b|111〉+ c|001〉 + d|110〉, (3.36)

where a2 + b2 + c2 + d2 = 1. According to Generalized Schmidt Decomposition [68]

the states with different sets of parameters are local-unitary(LU) inequivalent. The

relevant quantities are

r1 = r2 = r n, g =



ω 0 0

0 −ω 0

0 0 1


 , (3.37)

where

r = a2 + c2 − b2 − d2, ω = 2ad+ 2bc (3.38)
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and the unit vector n again is aligned with the axis z.

All three terms in the l.h.s. of Eq.(3.5) are bounded above:

• s1 · r1 ≤ |r|,

• s2 · r2 ≤ |r|,

• and owing to inequality |ω| ≤ 1, gij s1is2j ≤ 1.

Quite surprisingly all upper limits are reached simultaneously at

s1 = s2 = Sign(r)n, (3.39)

which results in

Λ2
max =

1

2
(1 + |r|) . (3.40)

This expression has a clear meaning. To understand it we parameterize the state

as

|ψ〉 = k1|00q1〉 + k2|11q2〉, (3.41)

where q1 and q2 are arbitrary single normalized qubit states and positive parameters

k1 and k2 satisfy k2
1 + k2

2 = 1. Then

Λ2
max = max(k2

1 , k
2
2), (3.42)

i.e. the maximization takes a larger coefficient in Eq.(3.41). In bipartite case the

maximization takes the largest coefficient in Schmidt decomposition [46, 106] and

in this sense Eq.(3.41) effectively takes the place of Schmidt decomposition. When

|q1〉 = |0〉 and |q2〉 = |1〉, Eq.(3.42) gives the known answer for generalized GHZ state

[93, 43].

The entanglement eigenvalue is minimal Λ2
max = 1/2 on condition that k1 = k2.

These states can be described as follows

|ψ〉 = |00q1〉 + |11q2〉 (3.43)

where q1 and q2 are arbitrary single qubit normalized states. The entanglement eigen-

value is constant Λ2
max = 1/2 and does not depend on single qubit state parameters.

Hence one may expect that all these states can be applied for teleportation and su-

perdense coding. It would be interesting to check whether this assumption is correct

or not.
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It turns out that GHZ state is not a unique state and is one of two-parametric

LU inequivalent states that have Λ2
max = 1/2. On the other hand W-state is unique

up to LU transformations and the low bound Λ2
max = 4/9 is reached if and only

if a = b = c. However, one cannot make such conclusions in general. Five real

parameters are necessary to parameterize the set of inequivalent three qubit pure

states [68]. And there is no explicit argument that W-state is not just one of LU

inequivalent states that have Λ2
max = 4/9.

3.4 Summary.

We have derived algebraic equations defining geometric measure of three qubit pure

states. These equations have a degree higher than four and explicit solutions for

general cases cannot be derived analytically. However, the explicit expressions are

not important. Remember that explicit expressions for the algebraic equations of

degree three and four have a limited practical significance but the equations itself

are more important. This is especially true for equations of higher degree; main

results can be derived from the equations rather than from the expressions of their

roots.

Eq.(3.7) give the nearest separable state directly and this separable states have

useful applications. In order to construct an entanglement witness, for example, the

crucial point lies in finding the nearest separable state [107]. This will be especially

interesting for highly entangled states that have a whole set of nearest separable

states and allow to construct a set of entanglement witnesses.

The expression in r.h.s. of Eq.(3.5) can be maximized directly for various three

qubit states. Although it is very hard to solve the higher-degree equation, it turns

out that the wide range of the three-qubit states have a symmetry and this symmetry

reduces the equations of degree six to the quadratic equations. In this reason Eq.(3.5)

can be used to derive the analytic expressions of the various entanglement measures

for the three-qubit states. Also Eq.(3.5) can be a starting point to explore the nu-

merical computation of the entanglement measures for the higher-qubit systems. We

would like to discuss this issue elsewhere.
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Chapter 4

Geometric measure of

entanglement and shared

quantum states

Entanglement is the most intriguing feature of quantum mechanics and a key resource

in quantum information science. One of the main goals in these theories is to develop a

comprehensive theory of multipartite entanglement. Various entanglement measures

have been invented to quantify the multi-particle entanglement [37, 36, 33, 35, 108,

109, 43] but none of them were able to suggest a method for calculating a measure of

multipartite systems. This mathematical difficulty is the main obstacle to elaborate

a theory of multi-particle entanglement.

In this chapter, we present the first calculation of the geometric measure of entan-

glement [43, 41, 42] for three qubit states which are expressed as linear combinations

of four given orthogonal product states. Any pure three qubit state can be written in

terms of five preassigned orthogonal product states [68] via Schmidt decomposition.

Thus the states discussed here are more general states compared to the well-known

GHZ [110] and W [65] states.

The reason for using the geometric measure of entanglement is that it is suitable

for any partite system regardless of its dimensions. However, analytical computation

for generic states still remains as a great challenge. The measure depends on entan-

glement eigenvalue Λ2
max and can be derived from the formula Eg(ψ) = 1−Λ2

max. For

pure states, the entanglement eigenvalue is equal to the maximal overlap of a given
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state with any complete product state. This measure has the following remarkable

properties:

i) it has an operational treatment. The same overlap Λ2
max defines Groverian

measure of entanglement [46, 92] which has been introduced later in operational

terms. In other words, it quantifies how well a given state serves as an input state to

Grover’s search algorithm [24]. From this view, Groverian measure can be regarded

as an operational treatment of the geometric measure.

ii) it has identified irregularity in channel capacity additivity [111]. Using this

measure, one can show that a family of quantities, which were thought to be additive

in an earlier papers, actually are not. For example, it is natural to conjecture that

preparing two pairs of entangled particles should give us twice the entanglement of

one pair and, similarly, using a channel twice doubles its capacity. However, this

conjecture claiming additivity has proved to be wrong in some cases.

iii) it has useful connections to other entanglement measures and gives rise to a

lower bound on the relative entropy of entanglement [103] and generalized robust-

ness [104]. For certain pure states the first lower bound is saturated and thus their

relative entropy of entanglement can be deduced from their geometric measure of

entanglement. The second lower bound to generalized robustness can be express in

terms of Λ2
max directly.

Owing to these features, the geometric measure can play an important role in

the investigation of different problems related to entanglement. For example, the

entanglement of two distinct multipartite bound entangled states can be determined

analytically in terms of a geometric measure of entanglement [112]. Recently, the same

measure has been used to understand the physical implication of Zamolodchikov’s

c-theorem [47] more deeply. It is an important application regarding the quantum

information techniques in the effect of renormalization group in field theories [48].

Thus it is natural that geometric measure of entanglement is an object of intense

interest and in some recent works revised [113] and generalized [114] versions of the

geometric measure were presented.

The progress made to date allows oneself to calculate the geometric measure of

entanglement for pure three qubit systems [64]. The basic idea is to use (n − 1)-

qubit mixed states to calculate the geometric measure of n-qubit pure states. In the

case of three qubits this idea converts the task effectively into the maximization of

the two-qubit mixed state over product states and yields linear eigenvalue equations

[66]. The solution of these linear eigenvalue equations reduces to the root finding for

algebraic equations of degree six. However, three-qubit states containing symmetries
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allow complete analytical solutions and explicit expressions as the symmetry reduces

the equations of degree six to the quadratic equations. Analytic expressions derived

in this way are unique and the presented effective method can be applied for extended

quantum systems. Our aim is to derive analytic expressions for a wider class of three

qubit systems and in this sense this chapter is the continuation of Ref.[66].

We consider most general W-type three qubit states that allow to derive analytic

expressions for entanglement eigenvalue. These states can be expressed as linear

combinations of four given orthogonal product states. If any of coefficients in this

expansion vanishes, then one obtains the states analyzed in [66]. Notice that arbitrary

linear combinations of five product states [68] give a couple of algebraic equations of

degree six. Hence Évariste Galois’s theorem does not allow to get analytic expressions

for these states except some particular cases.

We derive analytic expressions for an entanglement eigenvalue. Each expression

has its own applicable domain depending on state parameters and these applicable

domains are split up by separating surfaces. Thus the geometric measure distinguishes

different types of states depending on the corresponding applicable domain. States

that lie on separating surfaces are shared by two types of states and acquire new

features.

In Section 4.1 we derive stationarity equations and their solutions. In Section

4.2 we specify three qubit states under consideration and find relevant quantities. In

Section 4.3 we calculate entanglement eigenvalues and present explicit expressions. In

Section 4.4 we separate the validity domains of the derived expressions. In Section 4.5

we discuss shared states. In section 4.6 we make concluding remarks of this chapter.

4.1 Stationarity equations

In this section we briefly review the derivation of the stationarity equations and their

general solutions [66]. Denote by ρABC the density matrix of the three-qubit pure

state and define the entanglement eigenvalue Λ2
max [43]

Λ2
max = max

̺1̺2̺3
tr
(
ρABC̺1 ⊗ ̺2 ⊗ ̺3

)
, (4.1)

where the maximization runs over all normalized complete product states. Theorem

1 of Ref.[64] states that the maximization of a pure state over a single qubit state

can be completely derived by using a particle traced over density matrix. Hence

the theorem allows us to re-express the entanglement eigenvalue by reduced density

matrix ρAB of qubits A and B
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Λ2
max = max

̺1̺2
tr
(
ρAB̺1 ⊗ ̺2

)
. (4.2)

Now we introduce four Bloch vectors:

1) rA for the reduced density matrix ρA of the qubit A,

2) rB for the reduced density matrix ρB of the qubit B,

3)u for the single qubit state ̺1,

4) s for the single qubit state ̺2.

Then the expression for entanglement eigenvalue (4.2) takes the form

Λ2
max =

1

4
max

u2=v2=1
(1 + u · rA + s · rB + gij uivj) , (4.3)

where(summation on repeated indices i and j is understood)

gij = tr(ρABσi ⊗ σj) (4.4)

and σi’s are Pauli matrices. The closest product state satisfies the stationarity con-

ditions

rA + gs = λ1u, rB + gTu = λ2s, (4.5)

where Lagrange multipliers λ1 and λ2 enforce the unit Bloch vectors u and s. The

solutions of Eq.(4.5) are

u =
(
λ1λ211 − g gT

)−1
(λ2rA + g rB) , s =

(
λ1λ211 − gT g

)−1 (
λ1rB + gT rA

)
.

(4.6)

Unknown Lagrange multipliers are defined by equations

u2 = 1, v2 = 1. (4.7)

In general, Eq.(4.7) gives algebraic equations of degree six. The reason for this

is that stationarity equations define all extremes of the reduced density matrix ρAB

over product states, regardless of them being global or local. And the degree of the

algebraic equations is the number of possible extremes.

Eq.(4.6) contains valuable information. It provides solid bases for a new numerical

approach. This can be compared with the numerical calculations based on other

technique [93].
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4.2 Three Qubit State

We consider W-type state

|ψ〉 = a|100〉+ b|010〉+ c|001〉 + d|111〉, (4.8)

where free parameters a, b, c, d satisfy the normalization condition a2+b2+c2+d2 = 1.

Without loss of generality we consider only the case of positive parameters a, b, c, d.

At first sight, it is not obvious whether the state allows analytic solutions or not.

However, it does and our first task is to confirm the existence of the analytic solutions.

In fact, entanglement of the state Eq.(4.8) is invariant under the permutations of

four parameters a, b, c, d. The invariance under the permutations of three parameters

a, b, c is the consequence of the invariance under the permutations of qubits A,B,C.

Now we make a local unitary(LU) transformation that relabels the bases of qubits

B and C, i.e. 0B ↔ 1B, 0C ↔ 1C , and does not change the basis of qubit A.

This LU-transformation interchanges the coefficients as follows: a ↔ d, b ↔ c.

Since any entanglement measure must be invariant under LU-transformations and

the permutation b ↔ c, it must be also invariant under the permutation a ↔ d.

In view of this symmetry, any entanglement measure must be invariant under the

permutations of all the state parameters a, b, c, d. Owing to this symmetry, the state

allows to derive analytic expressions for the entanglement eigenvalues. The necessary

condition is [66]

det
(
λ1λ211 − g gT

)
= 0. (4.9)

Indeed, if the condition (4.9) is fulfilled, then the expressions (4.6) for the general

solutions are not applicable and Eq.(4.5) admits further simplification.

Denote by i, j, k unit vectors along axes x, y, z respectively. Straightforward cal-

culation yields

rA = r1 k, rB = r2 k, g =




2ω 0 0

0 2µ 0

0 0 −r3


 , (4.10)

where

r1 = b2 + c2 − a2 − d2, r2 = a2 + c2 − b2 − d2,

r3 = a2 + b2 − c2 − d2, ω = ab+ dc, µ = ab− dc. (4.11)

Vectors u and s can be written as linear combinations
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u = uii+ ujj + ukk, s = vii+ vjj + vkk (4.12)

of vectors i, j, k. The substitution of the Eq.(4.12) into Eq.(4.5) gives a couple of

equations in each direction. The result is a system of six linear equations

2ω vi = λ1ui, 2ω ui = λ2vi, (4.13a)

2µ vj = λ1uj, 2µuj = λ2vj , (4.13b)

r1 − r3vk = λ1uk, r2 − r3uk = λ2vk. (4.13c)

Above equations impose two conditions

(λ1λ2 − 4ω2)uivi = 0, (4.14a)

(λ1λ2 − 4µ2)ujvj = 0. (4.14b)

From these equations it can be deduced that the condition (4.9) is valid and

the system of equations (4.5) and (4.7) is solvable. Note that as a consequences of

Eq.(4.13) x and/or y components of vectors u and s vanish simultaneously. Hence,

conditions (4.14) are satisfied in following three cases:

• vectors u and s lie in xz plane

λ1λ2 − 4ω2 = 0, ujvj = 0, (4.15)

• vectors u and s lie in yz plane

λ1λ2 − 4µ2 = 0, uivi = 0, (4.16)

• vectors u and s are aligned with axis z

uivi = ujvj = 0. (4.17)

These cases are examined individually in next section.
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4.3 Explicit expressions

In this section we analyze all three cases and derive explicit expressions for entangle-

ment eigenvalue. Each expression has its own range of definition in which they are

deemed applicable. Three ranges of definition cover the four dimensional sphere given

by normalization condition. It is necessary to separate the validity domains and to

make clear which of expressions should be applied for a given state. It turns out that

the separation of domains requires solving inequalities that contain polynomials of

degree six. This is a nontrivial task and we investigate it in the next section.

4.3.1 Circumradius of Convex Quadrangle

Let us consider the first case. Our main task is to find Lagrange multipliers λ1 and

λ2. From equations (4.13c) and (4.15) we have

uk =
λ2r1 − r2r3
4ω2 − r23

, vk =
λ1r2 − r1r3
4ω2 − r23

. (4.18)

In its turn Eq.(4.13a) gives

λ1u
2
i = λ2v

2
i . (4.19)

Eq.(4.7) allows the substitution of expressions (4.18) into Eq.(4.19). Then we can

obtain the second equation for Lagrange multipliers

λ1

(
4ω2 + r22 − r23

)
= λ2

(
4ω2 + r21 − r23

)
. (4.20)

This equation has a simple form owing to condition (4.9). Thus we can factorize

the equation of degree six into the quadratic equations. Equations (4.20) and (4.15)

together yield

λ1 = 2ω
bc+ ad

ac+ bd
, λ2 = 2ω

ac+ bd

bc+ ad
. (4.21)

Note that we kept only positive values of Lagrange multipliers and omitted neg-

ative values to get the maximal value of Λ2
max. Now Eq.(4.3) takes the form

4Λ2
max = 1 +

8(ab+ cd)(ac+ bd)(ad+ bc) − r1r2r3
4ω2 − r23

. (4.22)

In fact, entanglement eigenvalue is the sum of two equal terms and this statement

follows from the identity
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1 − r1r2r3
4ω2 − r23

= 8
(ab+ cd)(ac+ bd)(ad+ bc)

4ω2 − r23
. (4.23)

To derive this identity one has to use the normalization condition a2+b2+c2+d2 = 1.

The identity allows to rewrite Eq.(4.22) as follows

Λ2
max = 4R2

q , (4.24)

where

R2
q =

(ab+ cd)(ac+ bd)(ad+ bc)

4ω2 − r23
. (4.25)

Above formula has a geometric interpretation and now we demonstrate it. Let us

define a quantity p ≡ (a+ b+ c+ d)/2. Then the denominator can be rewritten as

4ω2 − r23 = 16(p− a)(p− b)(p− c)(p− d). (4.26)

Five independent parameters are necessary to construct a convex quadrangle.

However, four independent parameters are necessary to construct a convex quad-

rangle that has circumradius. For such quadrangles the area Sq is given exactly by

Eq.(4.26) up to numerical factor, that is S2
q = (p − a)(p − b)(p − c)(p − d). Hence

Eq.(4.25) can be rewritten as

R2
q =

(ab+ cd)(ac+ bd)(ad+ bc)

16S2
q

. (4.27)

Thus Rq can be interpreted as a circumradius of the convex quadrangle. Eq.(4.27)

is the generalization of the corresponding formula of Ref.[66] and reduces to the

circumradius of the triangle if one of parameters is zero.

Eq.(4.24) is valid if vectors u and s are unit and have non-vanishing x components.

These conditions have short formulations

|uk| ≤ 1, |vk| ≤ 1. (4.28)

Above inequalities are polynomials of degree six and algebraic solutions are un-

likely. However, it is still possible do define the domain of validity of Eq.(4.27).

4.3.2 Circumradius of Crossed-Quadrangle

Here, we consider the second case given by Eq.(4.16). Derivations repeat steps of the

previous subsection and the only difference is the interchange ω ↔ µ. Therefore we
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skip some obvious steps and present only main results. Components of vectors u and

s along axis z are

uk =
λ2r1 − r2r3
4µ2 − r23

, vk =
λ1r2 − r1r3
4µ2 − r23

. (4.29)

The second equation for Lagrange multipliers

λ1

(
4µ2 + r22 − r23

)
= λ2

(
4µ2 + r21 − r23

)
(4.30)

together with Eq.(4.16) yields

λ1 = ±2µ
bc− ad

ac− bd
, λ2 = ±2µ

ac− bd

bc− ad
. (4.31)

Using these expressions, one can derive the following expression for entanglement

eigenvalue

4Λ2
max = 1 +

λ2(4µ
2 + r21 − r23) − r1r2r3

4µ2 − r23
. (4.32)

Now the restrictions 1/4 < Λ2
max ≤ 1 derived in Ref.[64] uniquely define the

signs in Eq.(4.31). Right signs enforce strictly positive fraction in right hand side

of Eq.(4.32). To make a right choice, we replace d by −d in the identity (4.23) and

rewrite Eq.(4.32) as follows

4Λ2
max =

1

2

(ac− bd)(bc− ad)(ab− cd)

p(p− c− d)(p− b − d)(p− a− d)
±1

2

(ac− bd)(bc− ad)(ab− cd)

p(p− c− d)(p− b− d)(p− a− d)
.

(4.33)

Lower sign yields zero and is wrong. It shows that reduced density matrix ρAB

still has zero eigenvalue.

Upper sign may yield a true answer. Entanglement eigenvalue is

Λ2
max = 4R2

×, (4.34)

where

R2
× =

(ac− bd)(bc− ad)(ab− cd)

16S2
×

, (4.35)

and S2
× = p(p− c− d)(p− b− d)(p− a− d). The formula (4.35) may seem suspicious

because it is not clear whether right hand side is positive and lies in required region.

To clarify the situation we present a geometrical treatment of Eq.(4.35).
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Figure 4.1: This figure shows the example for the case when crossed quadran-

gle(Fig.1A) has larger circumradius than that of convex quadrangle(Fig.1B) with

same sides.

The geometrical figure ABCD in Fig.1A is not a quadrangle and is not a polygon

at all. The reason is that it has crossed sides AD and BC. We call figure ABCD

crossed-quadrangle in a figurative sense as it has four sides and a cross point. Another

justification of this term is that we will compare figureABCD in Fig.1A with a convex

quadrangle ABCD containing the same sides.

Consider a crossed-quadrangle ABCD with sides AB = a,BC = b, CD =

c,DA = d that has circumcircle. It is easy to find the length of the interval AC

AC2 =
(ac− bd)(bc− ad)

ab− cd
. (4.36)

This relation is true unless triangles ABC and ADC have the same height and

as a consequence equal areas. Note that S× is not an area of the crossed-quadrangle.

It is the difference between the areas of the noted triangles.

Using Eq.(4.36), one can derive exactly Eq.(4.35) for the circumradius of the

crossed-quadrangle.

Eq.(4.34) is meaningful if vectors u and s are unit and have nonzero components

along the axis y.
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4.3.3 Largest Coefficient

In this subsection we consider the last case described by Eq.(4.17). Entanglement

eigenvalue takes maximal value if all terms in r.h.s. of Eq.(4.3) are positive. Then

equations (4.17) and (4.10) together impose

u = Sign(r1)k, s = Sign(r2)k, r1r2r3 < 0, (4.37)

where Sign(x) gives -1, 0 or 1 depending on whether x is negative, zero, or positive.

Substituting these values into Eq.(4.3), we obtain

Λ2
max =

1

4
(1 + |r1| + |r2| + |r3|) . (4.38)

Owing to inequality, r1r2r3 < 0, above expression always gives a square of the

largest coefficient l

l = max(a, b, c, d) (4.39)

in Eq.(4.8). Indeed, let us consider the case r1 > 0, r2 > 0, r3 < 0. From inequalities

r1 > 0, r2 > 0 it follows that c2 > d2 + |a2 − b2| and therefore c2 > d2. Note, c2 > d2

is necessary but not sufficient condition. Now if d > b, then r1 > 0 yields c > a and

if d < b, then r3 < 0 yields c > a. Thus inequality c > a is true in all cases. Similarly

c > b and c is the largest coefficient. On the other hand Λ2
max = c2 and Eq.(4.38)

really gives the largest coefficient in this case.

Similarly, cases r1 > 0, r2 < 0, r3 > 0 and r1 < 0, r2 > 0, r3 > 0 yield Λ2
max = b2

and Λ2
max = a2, respectively. And again entanglement eigenvalue takes the value of

the largest coefficient.

The last possibility r1 < 0, r2 < 0, r3 < 0 can be analyzed using analogous

speculations. One obtains Λ2
max = d2 and d is the largest coefficient.

Combining all cases mentioned earlier, we rewrite Eq.(4.38) as follows

Λ2
max = l2. (4.40)

This expression is valid if both vectors u and s are collinear with the axes z.

We have derived three expressions for (4.24),(4.34) and (4.40) for entanglement

eigenvalue. They are valid when vectors u and s lie in xz plane, lie in yz plane and

are collinear with axis z, respectively. The following section goes on to specify these

domains by parameters a, b, c, d.
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4.4 Applicable Domains

Mainly, two points are being analyzed. First, we probe into the meaningful geomet-

rical interpretations of quantities Rq and R×. Second, we separate validity domains

of equations (4.24),(4.34) and (4.40). It is mentioned earlier that algebraic methods

for solving the inequalities of degree six are ineffective. Hence, we use geometric tools

that are elegant and concise in this case.

We consider four parameters a, b, c, d as free parameters as the normalization

condition is irrelevant here. Indeed, one can use the state |ψ〉/
√
a2 + b2 + c2 + d2

where all parameters are free. If one repeats the same steps, the only difference is

that the entanglement eigenvalue Λ2
max is replaced by Λ2

max/(a
2 + b2 + c2 + d2). In

other words, normalization condition re-scales the quadrangle, convex or crossed, so

that the circumradius always lies in the required region. Consequently, in construct-

ing quadrangles we can neglect the normalization condition and consider four free

parameters a, b, c, d.

4.4.1 Existence of circumcircle.

It is known that four sides a, b, c, d of the convex quadrangle must obey the inequality

p − l > 0. Any set of such parameters forms a cyclic quadrilateral. Note that the

quadrangle is not unique as the sides can be arranged in different orders. But all

these quadrangles have the same circumcircle and the circumradius is unique.

The sides of a crossed-quadrangle must obey the same condition. Indeed, from

Fig.1A it follows that BC−AB < AC < AD+DC andDC−AD < AC < AB+BC.

Therefore AB + AD +DC > BC and AB + BC + AD > DC. The sides BC and

DC are two largest sides and consequently p− l > 0. However, the existence of the

circumcircle requires an additional condition and it is explained here. The relation

r3 = 2µ cosABC forces 4µ2 ≥ r23 and, therefore

S2
× ≥ 0. (4.41)

Thus the denominator in Eq.(4.35) must be positive. On the other hand the inequality

AC2 ≥ 0 forces a positive numerator of the same fraction

(ac− bd)(bc− ad)(ab− cd) ≥ 0. (4.42)

These two inequalities impose conditions on parameters a, b, c, d. For the future

considerations, we need to write explicitly the condition imposed by inequality (4.42).

The numerator is a symmetric function on parameters a, b, c, d and it suffices to
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analyze only the case a ≥ b ≥ c ≥ d. Obviously (ac − bd) ≥ 0, (ab − cd) ≥ 0

and it remains the constraint bc ≥ ad. The last inequality states that the product

of the largest and smallest coefficients must not exceed the product of remaining

coefficients. Denote by s the smallest coefficient

s = min(a, b, c, d). (4.43)

We can summarize all cases as follows

l2s2 ≤ abcd. (4.44)

This is necessary but not sufficient condition for the existence of R×. The next

condition S2
× > 0 we do not analyze because the first condition (4.44) suffices to

separate the validity domains.

4.4.2 Separation of validity domains.

In this section we define applicable domains of expressions (4.24),(4.34) and (4.40)

step by step.

Circumradius of convex quadrangle. First we separate the validity domains

between the convex quadrangle and the largest coefficient. In a highly entangled

region, where the center of circumcircle lies inside the quadrangle, the circumradius

is greater than any of sides and yield a correct answer. This situation is changed

when the center lies on the largest side of the quadrangle and both equations (4.24)

and (4.40) give equal answers. Suppose that the side a is the largest one and the

center lies on the side a. A little geometrical speculation yields

a2 = b2 + c2 + d2 + 2
bcd

a
. (4.45)

From this equation we deduce that if a2 is smaller than r.h.s., i.e.

a2 ≤ b2 + c2 + d2 + 2
bcd

a
, (4.46)

then the circumradius-formula is valid. If a2 is greater than r.h.s in Eq.(4.45), then the

largest coefficient formula is valid. The inequality (4.46) also guarantees the existence

of the cyclic quadrilateral. Indeed, using the inequality

bc+ cd+ bd ≥ 3
bcd

a
, (4.47)
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one derives

(b + c+ d)2 ≥ b2 + c2 + d2 +
6bcd

a
≥ a2. (4.48)

Above inequality ensures the existence of a convex quadrangle with the given sides.

To get a confidence, we can solve equation uk = ±1 using the relation (4.45).

However, it is more transparent to factorize it as following:

(4ω2−r23)(1+uk) =
2ad

bc+ ad

(
b2 + c2 + d2 +

2bcd

a
− a2

)(
a2 + b2 + c2 +

2abc

d
− d2

)

(4.49a)

(4ω2−r23)(1−uk) =
2bc

bc+ ad

(
a2 + c2 + d2 +

2acd

b
− b2

)(
a2 + b2 + d2 +

2abd

c
− c2

)
.

(4.49b)

Similarly, we have

(4ω2−r23)(1+vk) =
2bd

ac+ bd

(
a2 + c2 + d2 +

2acd

b
− b2

)(
a2 + b2 + c2 +

2abc

d
− d2

)

(4.50a)

(4ω2−r23)(1−vk) =
2ac

ac+ bd

(
b2 + c2 + d2 +

2bcd

a
− a2

)(
a2 + b2 + d2 +

2abd

c
− c2

)
.

(4.50b)

Thus, the circumradius of the convex quadrangle gives a correct answer if all

brackets in the above equations are positive. In general, Eq.(4.24) is valid if

l2 ≤ 1

2
+
abcd

l2
. (4.51)

When one of parameters vanishes, i.e. abcd = 0, inequality (4.51) coincides with

the corresponding condition in Ref.[66].

Circumradius of crossed quadrangle. Next we separate the validity domains

between the convex and the crossed quadrangles. If S2
× < 0, then crossed one has

no circumcircle and the only choice is the circumradius of the convex quadrangle. If

S2
× > 0, then we use the equality

4R2
q − 4R2

× =
r

2

abcd

S2
qS

2
×

(4.52)

where r = r1r2r3. It shows that r > 0 yields Rq > R× and vice-versa. Entanglement

eigenvalue always takes the maximal value. Therefore, Λ2
max = 4R2

q if r > 0 and
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Λ2
max = 4R2

× if r < 0. Thus r = 0 is the separating surface and it is necessary to

analyze the condition r < 0.

Suppose a ≥ b ≥ c ≥ d. Then r2 and r3 are positive. Therefore r is negative if

and only if r1 is negative, which implies

a2 + d2 > b2 + c2. (4.53)

Now suppose a ≥ d ≥ b ≥ c. Then r1 is negative and r3 is positive. Therefore r2

must be positive, which implies

a2 + c2 > b2 + d2. (4.54)

It is easy to see that in both cases left hand sides contain the largest and smallest

coefficients. This result can be generalized as follows: r ≤ 0 if and only if

l2 ≥ 1

2
− s2. (4.55)

It remains to separate the validity domains between the crossed-quadrangle and

the largest coefficient. We can use three equivalent ways to make this separation:

1)to use the geometric picture and to see when 4R2
× and l2 coincide,

2)directly factorize equation uk = ±1,

3)change the sign of the parameter d.

All of these give the same result stating that Eq.(4.34) is valid if

l2 ≤ 1

2
− abcd

l2
. (4.56)

Inequalities (4.55) and (4.56) together yield

l2s2 ≥ abcd. (4.57)

This inequality is contradicted by (4.44) unless l2s2 = abcd. Special cases like

l2s2 = abcd are considered in the next section. Now we would like to comment the fact

that crossed quadrangle survives only in exceptional cases. Actually crossed case can

be obtained from the convex cases by changing the sign of any parameter. It crucially

depends on signs of parameters or, in general, on phases of parameters. On the other

hand all phases in Eq.(4.8) can be eliminated by LU-transformations. For example,

the phase of d can be eliminated by redefinition of the phase of the state function |ψ〉
and the phases of remaining parameters can be absorbed in the definitions of basis

vectors |1〉 of the qubits A, B and C. Owing to this entanglement eigenvalue being
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Figure 4.2: Plot of d-dependence of Λ2
max when a = b = c. When d → 1, Λ2

max goes

to 1 as expected. When d = 0, Λ2
max becomes 4/9, which coincides with the result of

Ref.[43]. When r = 0 which implies a = d = 1/2, Λ2
max becomes 1/2 (it is shown as

dotted line). When d = 2a, which implies d =
√

4/7, Λ2
max goes to 4/7, which is one

of shared states (it is also shown as another dotted line).

LU invariant quantity does not depend on phases. However, crossed case is relevant if

one considers states given by Generalized Schmidt Decomposition(GSD) [68]. In this

case phases can not be gauged away and crossed case has its own range of definition.

This range has shrunk to the separating surface r = 0 in our case.

Now we are ready to present a distinct separation of the validity domains:

Λ2
max =





4R2
q , if l2 ≤ 1/2 + abcd/l2

l2 if l2 ≥ 1/2 + abcd/l2
(4.58)

As an illustration we present the plot of d-dependence of Λ2
max in Fig.2 when

a = b = c.

We have distinguished three types of quantum states depending on which ex-

pression takes entanglement eigenvalue. Also there are states that lie on surfaces

separating different applicable domains. They are shared by two types of quantum
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states and may have interesting features. We will call those shared states. Such shared

states are considered in the next section.

4.5 Shared States.

Consider quantum states for which both convex and crossed quadrangles yield the

same entanglement eigenvalue. Eq.(4.36) is not applicable and we rewrite equations

(4.27) and (4.35) as follows

4R2
q =

1

2

(
1 − r

16S2
q

)
, 4R2

× =
1

2

(
1 − r

16S2
×

)
. (4.59)

These equations show that if the state lies on the separating surface r = 0, then

entanglement eigenvalue is a constant

Λ2
max =

1

2
(4.60)

and does not depend on the state parameters. This fact has a simple interpretation.

Consider the case r1 = 0. Then b2+c2 = a2+d2 = 1/2 and the quadrangle consists of

two right triangles. These two triangles have a common hypotenuse and legs b, c and

a, d, respectively, regardless of the triangles being in the same semicircle or in opposite

semicircles. In both cases they yield same circumradius. Decisive factor is that the

center of the circumcircle lies on the diagonal. Thus the perimeter and diagonals

of the quadrangle divide ranges of definition of the convex quadrangle. When the

center of circumcircle passes the perimeter, entanglement eigenvalue changes-over

from convex circumradius to the largest coefficient. And if the center lies on the

diagonal, convex and crossed circumradiuses become equal.

We would like to bring plausible arguments that this picture is incomplete and

there is a region that has been shrunk to the point. Consider three-qubit state given

by GSD

|ψ〉 = a|100〉 + b|010〉+ b|001〉+ d|111〉+ e|000〉. (4.61)

One of parameters must have non-vanishing phase[68] and we can treat this phase

as an angle. Then, we have five sides and an angle. This set defines a sexangle that has

circumcircle. One can guess that in a highly entangled region entanglement eigenvalue

is the circumradius of the sexangle. However, there is a crucial difference. Any convex

sexangle contains a star type area and the sides of this area are the diagonals of

the sexangle. The perimeter of the star separates the convex and the crossed cases.
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Unfortunately, we can not see this picture in our case because the diagonals of a

quadrangle confine a single point. It is left for future to calculate the entanglement

eigenvalues for arbitrary three qubit states and justify this general picture.

Shared states given by r = 0 acquire new properties. They can be used for perfect

teleportation and superdense coding [66, 105, 115]. This statement is not proven

clearly, but also no exceptions are known.

Now consider a case where the largest coefficient and circumradius of the convex

quadrangle coincide with each other. The separating surface is given by

l2 =
1

2
+
abcd

l2
. (4.62)

Entanglement eigenvalue ranges within the narrow interval

1

2
≤ Λ2

max ≤ 4

7
. (4.63)

It separates slightly and highly entangled states. When one of coefficients is large

enough and satisfies the relation l2 > 1/2+ abcd/l2, entanglement eigenvalue takes a

larger coefficient. And the expression (4.8) for the state function effectively takes the

place of Schmidt decomposition. In highly entangled region no similar picture exists

and all coefficients participate in equal parts and yield the circumradius. Thus, shared

states given by Eq.(4.62) separate slightly entangled states from highly entangled

ones, and can be ascribed to both types.

What is the meaning of these states? Shared states given by r = 0 acquire new and

important features. One can expect that shared states dividing highly and slightly

entangled states also must acquire some new features. However, these features are

yet to be discovered.

4.6 Conclusions

We have considered three-parametric families of three qubit states and derived ex-

plicit expressions for entanglement eigenvalue. The final expressions have their own

geometrical interpretation. The result in this chapter with the results of Ref.[66]

show that the geometric measure has two visiting cards: the circumradius and the

largest coefficient. The geometric interpretation may enable us to predict the answer

for the states given by GSD. If the center of circumcircle lies in star type area con-

fined by diagonals of the sexangle, then entanglement eigenvalue is the circumradius

of the crossed sexangle(s). If the center lies in the remaining part of sexangle, the
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entanglement eigenvalue is the circumradius of the convex sexangle. And when the

center passes the perimeter, then entanglement eigenvalue is the largest coefficient.

Although we cannot justify our prediction due to lack of computational technique,

this picture surely enables us to take a step toward a deeper understanding of the

entanglement measure [69].

Shared states given by r = 0 play an important role in quantum information

theory. The application of shared states given by Eq.(4.62) is somewhat questionable,

and should be analyzed further. It should be pointed out that one has to understand

the properties of these states and find the possible applications. We would like to

investigate this issue elsewhere.

Finally following our procedure, one can obtain the nearest product state of a

given three-parametric W-type state. These two states will always be separated by

a line of densities composed of the convex combination of W-type states and the

nearest product states [116]. There is a separable density matrix ̺0 which splits the

line into two parts as follows. One part consists of separable densities and another

part consists of non-separable densities. It was shown in Ref.[116] that an operator

W = ̺0 − ρABC − tr[̺0(̺0 − ρABC)]I has the properties tr(WρABC) < 0, and

tr(W̺) ≥ 0 for the arbitrary separable state ̺. The operator W is clearly Hermitian

and thus is an entanglement witness for the state. Thus our results allow oneself to

construct the entanglement witnesses for W-type three qubit states. However, the

explicit derivation of ̺0 seems to be highly non-trivial [117, 118].
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Chapter 5

Three-qubit Groverian

measure

Recently, much attention is paid to quantum entanglement[119]. It is believed in

quantum information community that entanglement is the physical resource which

makes quantum computer outperforms classical one[32]. Thus in order to exploit

fully this physical resource for constructing and developing quantum algorithms it

is important to quantify the entanglement. The quantity for the quantification is

usually called entanglement measure.

About decade ago the axioms which entanglement measures should satisfy were

studied[33]. The most important property for measure is monotonicity under local

operation and classical communication(LOCC)[34]. Following the axioms, many en-

tanglement measures were constructed such as relative entropy[35], entanglement

of distillation[36] and formation[37, 38, 39, 40], geometric measure[41, 42, 43, 116],

Schmidt measure[108] and Groverian measure[46]. Entanglement measures are used

in various branches of quantum mechanics. Especially, recently, they are used to try

to understand Zamolodchikov’s c-theorem[47] more profoundly. It may be an impor-

tant application of the quantum information techniques to understand the effect of

renormalization group in field theories[48].

The purpose of this chapter is to compute the Groverian measure for various

three-qubit quantum states.The Groverian measure G(ψ) for three-qubit state |ψ〉 is

defined by G(ψ) ≡
√

1 − Pmax where

Pmax = max
|q1〉,|q2〉,|q3〉

|〈q1|〈q2|〈q3|ψ〉|2. (5.1)
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Thus Pmax can be interpreted as a maximal overlap between the given state |ψ〉
and product states. Groverian measure is an operational treatment of a geometric

measure. Thus, if one can computeG(ψ), one can also compute the geometric measure

of pure state by G2(ψ). Sometimes it is more convenient to re-express Eq.(5.1) in

terms of the density matrix ρ = |ψ〉〈ψ|. This can be easily accomplished by an

expression

Pmax = max
R1,R2,R3

Tr
[
ρR1 ⊗R2 ⊗R3

]
(5.2)

where Ri ≡ |qi〉〈qi| density matrix for the product state. Eq.(5.1) and Eq.(5.2) mani-

festly show that Pmax and G(ψ) are local-unitary(LU) invariant quantities. Since it is

well-known that three-qubit system has five independent LU-invariants[71, 68, 120],

say Ji(i = 1, · · · , 5), we would like to focus on the relation of the Groverian measures

to LU-invariants Ji’s in this chapter.

This chapter is organized as follows. In section 5.1 we review simple case, i.e.

two-qubit system. Using Bloch form of the density matrix it is shown in this section

that two-qubit system has only one independent LU-invariant quantity, say J . It

is also shown that Groverian measure and Pmax for arbitrary two-qubit states can

be expressed solely in terms of J . In section 5.2 we have discussed how to derive

LU-invariants in higher-qubit systems. In fact, we have derived many LU-invariant

quantities using Bloch form of the density matrix in three-qubit system. It is shown

that all LU-invariants derived can be expressed in terms of Ji’s discussed in Ref.[68].

Recently, it was shown in Ref.[64] that Pmax for n-qubit state can be computed from

(n− 1)-qubit reduced mixed state. This theorem was used in Ref.[66] and Ref.[67] to

compute analytically the geometric measures for various three-qubit states. In this

section we have discussed the physical reason why this theorem is possible from the

aspect of LU-invariance. In section 5.3 we have computed the Groverian measures for

various types of the three-qubit system. The five types we discussed in this section

were originally developed in Ref.[68] for the classification of the three-qubit states.

It has been shown that the Groverian measures for type 1, type 2, and type 3 can

be analytically computed. We have expressed all analytical results in terms of LU-

invariants Ji’s. For type 4 and type 5 the analytical computation seems to be highly

nontrivial and may need separate publications. Thus the analytical calculation for

these types is not presented in this chapter. The results of this section are summarized

in Table I. In section 5.4 we have discussed the modified W-like state, which has three-

independent real parameters. In fact, this state cannot be categorized in the five types

discussed in section 5.3. The analytic expressions of the Groverian measure for this

state was computed recently in Ref.[67]. It was shown that the measure has three
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different expressions depending on the domains of the parameter space. It turned

out that each expression has its own geometrical meaning. In this section we have

re-expressed all expressions of the Groverian measure in terms of LU-invariants. In

section 5.5 brief conclusion is given.

5.1 Two Qubit: Simple Case

In this section we consider Pmax for the two-qubit system. The Groverian measure

for two-qubit system is already well-known[93]. However, we revisit this issue here to

explore how the measure is expressed in terms of the LU-invariant quantities. The

Schmidt decomposition[121, 122] makes the most general expression of the two-qubit

state vector to be simple form

|ψ〉 = λ0|00〉 + λ1|11〉 (5.3)

with λ0, λ1 ≥ 0 and λ2
0 + λ2

1 = 1. The density matrix for |ψ〉 can be expressed in the

Bloch form as following:

ρ = |ψ〉〈ψ| =
1

4
[11 ⊗ 11 + v1ασα ⊗ 11 + v2α11 ⊗ σα + gαβσα ⊗ σβ ] , (5.4)

where

~v1 = ~v2 =




0

0

λ2
0 − λ2

1


 , gαβ =




2λ0λ1 0 0

0 −2λ0λ1 0

0 0 1


 . (5.5)

In order to discuss the LU transformation we consider first the quantity UσαU
†

where U is 2 × 2 unitary matrix. With direct calculation one can prove easily

UσαU
† = Oαβσβ , (5.6)

where the explicit expression of Oαβ is given in appendix A. Since Oαβ is a real

matrix satisfying OOT = OTO = 11, it is an element of the rotation group O(3).

Therefore, Eq.(5.6) implies that the LU-invariants in the density matrix (5.4) are

|~v1|, |~v2|, Tr[ggT ] etc.

All LU-invariant quantities can be written in terms of one quantity, say J ≡ λ2
0λ

2
1.

In fact, J can be expressed in terms of two-qubit concurrence[39] C by C2/4. Then it

is easy to show

|~v1|2 = |~v2|2 = 1 − 4J, (5.7)

gαβgαβ = 1 + 8J.
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It is well-known that Pmax is simply square of larger Schmidt number in two-qubit

case

Pmax = max
(
λ2

0, λ
2
1

)
. (5.8)

It can be re-expressed in terms of reduced density operators

Pmax =
1

2

[
1 +

√
1 − 4detρA

]
, (5.9)

where ρA = TrBρ = (1+v1ασα)/2. Since Pmax is invariant under LU-transformation,

it should be expressed in terms of LU-invariant quantities. In fact, Pmax in Eq.(5.9)

can be re-written as

Pmax =
1

2

[
1 +

√
1 − 4J

]
. (5.10)

Eq.(5.10) implies that Pmax is manifestly LU-invariant.

5.2 Local Unitary Invariants

The Bloch representation of the 3-qubit density matrix can be written in the form

ρ =
1

8

[
11 ⊗ 11 ⊗ 11 + v1ασα ⊗ 11 ⊗ 11 + v2α11 ⊗ σα ⊗ 11 + v3α11 ⊗ 11 ⊗ σα

+h
(1)
αβ11 ⊗ σα ⊗ σβ + h

(2)
αβσα ⊗ 11 ⊗ σβ + h

(3)
αβσα ⊗ σβ ⊗ 11

+gαβγσα ⊗ σβ ⊗ σγ

]
, (5.11)

where σα is Pauli matrix. According to Eq.(5.6) and appendix A it is easy to show

that the LU-invariants in the density matrix (5.11) are |~v1|, |~v2|, |~v3|, Tr[h(1)h(1)T ],

Tr[h(2)h(2)T ], Tr[h(3)h(3)T ], gαβγgαβγ etc.

Few years ago Aćın et al[68] represented the three-qubit arbitrary states in a

simple form using a generalized Schmidt decomposition[121, 122] as following:

|ψ〉 = λ0|000〉+ λ1e
iϕ|100〉+ λ2|101〉+ λ3|110〉+ λ4|111〉 (5.12)

with λi ≥ 0, 0 ≤ ϕ ≤ π, and
∑

i λ
2
i = 1. The five algebraically independent polyno-

mial LU-invariants were also constructed in Ref.[68]:

J1 = λ2
1λ

2
4 + λ2

2λ
2
3 − 2λ1λ2λ3λ4 cosϕ, (5.13)

J2 = λ2
0λ

2
2, J3 = λ2

0λ
2
3, J4 = λ2

0λ
2
4,

J5 = λ2
0(J1 + λ2

2λ
2
3 − λ2

1λ
2
4).
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In order to determine how many states have the same values of the invariants

J1, J2, ...J5, and therefore how many further discrete-valued invariants are needed to

specify uniquely a pure state of three qubits up to local transformations, one would

need to find the number of different sets of parameters ϕ and λi(i = 0, 1, ...4), yielding

the same invariants. Once λ0 is found, other parameters are determined uniquely and

therefore we derive an equation defining λ0 in terms of polynomial invariants.

(J1 + J4)λ
4
0 − (J5 + J4)λ

2
0 + J2J3 + J2J4 + J3J4 + J2

4 = 0. (5.14)

This equation has at most two positive roots and consequently an additional

discrete-valued invariant is required to specify uniquely a pure three qubit state.

Generally 18 LU-invariants, nine of which may be taken to have only discrete values,

are needed to determine a mixed 2-qubit state [123].

If one represents the density matrix |ψ〉〈ψ| as a Bloch form like Eq.(5.11), it is

possible to construct v1α, v2α, v3α, h
(1)
αβ , h

(2)
αβ , h

(3)
αβ , and gαβγ explicitly, which are

summarized in appendix B. Using these explicit expressions one can show directly

that all polynomial LU-invariant quantities of pure states are expressed in terms of

Ji as following:

|~v1|2 = 1 − 4(J2 + J3 + J4), |~v2|2 = 1 − 4(J1 + J3 + J4) (5.15)

|~v3|2 = 1 − 4(J1 + J2 + J4), Tr[h(1)h(1)T ] = 1 + 4(2J1 − J2 − J3)

Tr[h(2)h(2)T ] = 1 − 4(J1 − 2J2 + J3), Tr[h(3)h(3)T ] = 1 − 4(J1 + J2 − 2J3)

gαβγgαβγ = 1 + 4(2J1 + 2J2 + 2J3 + 3J4)

h
(3)
αβv

(1)
α v

(2)
β = 1 − 4(J1 + J2 + J3 + J4 − J5).

Recently, Ref.[64] has shown that Pmax for n-qubit pure state can be computed

from (n− 1)-qubit reduced mixed state. This is followed from a fact

max
R1,R2···Rn

Tr
[
ρR1 ⊗R2 ⊗ · · · ⊗Rn

]
= max

R1,R2···Rn−1
Tr
[
ρR1 ⊗R2 ⊗ · · · ⊗Rn−1 ⊗ 11

]

(5.16)

which is Theorem I of Ref.[64]. Here, we would like to discuss the physical meaning

of Eq.(5.16) from the aspect of LU-invariance. Eq.(5.16) in 3-qubit system reduces

to

Pmax = max
R1,R2

Tr
[
ρABR1 ⊗R2

]
(5.17)

where ρAB = TrCρ. From Eq.(5.11) ρAB simply reduces to

ρ =
1

4

[
11 ⊗ 11 + v1ασα ⊗ 11 + v2α11 ⊗ σα + h

(3)
αβσα ⊗ σβ

]
(5.18)
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where v1α, v2α and h
(3)
αβ are explicitly given in appendix B. Of course, the LU-invariant

quantities of ρAB are |~v1|, |~v2|, Tr[h(3)h(3)T ], h
(3)
αβv1αv2β etc, all of which, of course,

can be re-expressed in terms of J1, J2, J3, J4 and J5. It is worthwhile noting that

we need all Ji’s to express the LU-invariant quantities of ρAB. This means that the

reduced state ρAB does have full information on the LU-invariance of the original

pure state ρ.

Indeed, any reduced state resulting from a partial trace over a single qubit

uniquely determines any entanglement measure of original system, given that the

initial state is pure. Consider an (n − 1)-qubit reduced density matrix that can be

purified by a single qubit reference system. Let |ψ′〉 be any joint pure state. All other

purifications can be obtained from the state |ψ′〉 by LU-transformations U⊗11⊗(n−1),

where U is a local unitary matrix acting on single qubit. Since any entanglement mea-

sure must be invariant under LU-transformations, it must be same for all purifications

independently of U . Hence the reduced density matrix determines any entanglement

measure on the initial pure state. That is why we can compute Pmax of n-qubit pure

state from the (n− 1)-qubit reduced mixed state.

Generally, the information on the LU-invariance of the original n-qubit state is

partly lost if we take partial trace twice. In order to show this explicitly let us consider

ρA ≡ TrBρ
AB and ρB ≡ TrAρ

AB:

ρA =
1

2
[11 + v1ασα] (5.19)

ρB =
1

2
[11 + v2ασα] .

Eq.(5.6) and appendix A imply that their LU-invariant quantities are only |~v1| and

|~v2| respectively. Thus, we do not need J5 to express the LU-invariant quantities

of ρA and ρB. This fact indicates that the mixed states ρA and ρB partly loose the

information of the LU-invariance of the original pure state ρ. This is why (n−2)-qubit

reduced state cannot be used to compute Pmax of n-qubit pure state.

5.3 Calculation of Pmax

5.3.1 General Feature

If we insert the Bloch representation

R1 =
11 + ~s1 · ~σ

2
R2 =

11 + ~s2 · ~σ
2

(5.20)
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with |~s1| = |~s2| = 1 into Eq.(5.17), Pmax for 3-qubit state becomes

Pmax =
1

4
max

|~s1|=|~s2|=1
[1 + ~r1 · ~s1 + ~r2 · ~s2 + gijs1is2j ] (5.21)

where

~r1 = Tr
[
ρA~σ

]
(5.22)

~r2 = Tr
[
ρB~σ

]

gij = Tr
[
ρABσi ⊗ σj

]
.

Since in Eq.(5.21) Pmax is maximization with constraint |~s1| = |~s2| = 1, we should

use the Lagrange multiplier method, which yields a pair of equations

~r1 + g~s2 = Λ1~s1 (5.23)

~r2 + gT~s1 = Λ2~s2,

where the symbol g represents the matrix gij in Eq.(5.22). Thus we should solve ~s1,

~s2, Λ1 and Λ2 by eq.(5.23) and the constraint |~s1| = |~s2| = 1. Although it is highly

nontrivial to solve Eq.(5.23), sometimes it is not difficult if the given 3-qubit state

|ψ〉 has rich symmetries. Now, we would like to compute Pmax for various types of

3-qubit system.

5.3.2 Type 1 (Product States): J1 = J2 = J3 = J4 = J5 = 0

In order for all Ji’s to be zero we have two cases λ0 = J1 = 0 or λ2 = λ3 = λ4 = 0.

λ0 = J1 = 0

If λ0 = 0, |ψ〉 in Eq.(5.12) becomes |ψ〉 = |1〉 ⊗ |BC〉 where

|BC〉 = λ1e
iϕ|00〉+ λ2|01〉 + λ3|10〉+ λ4|11〉. (5.24)

Thus Pmax for |ψ〉 equals to that for |BC〉. Since |BC〉 is two-qubit state, one can

easily compute Pmax using Eq.(5.9), which is

Pmax =
1

2

[
1 +

√
1 − 4det (TrB|BC〉〈BC|)

]
=

1

2

[
1 +

√
1 − 4J1

]
. (5.25)

If, therefore, λ0 = J1 = 0, we have Pmax = 1, which gives a vanishing Groverian

measure.
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λ2 = λ3 = λ4 = 0

In this case |ψ〉 in Eq.(5.12) becomes

|ψ〉 =
(
λ0|0〉 + λ1e

iϕ|1〉
)
⊗ |0〉 ⊗ |0〉. (5.26)

Since |ψ〉 is completely product state, Pmax becomes one.

5.3.3 Type2a (biseparable states)

In this type we have following three cases.

J1 6= 0 and J2 = J3 = J4 = J5 = 0

In this case we have λ0 = 0. Thus Pmax for this case is exactly same with Eq.(5.25).

J2 6= 0 and J1 = J3 = J4 = J5 = 0

In this case we have λ2 = λ4 = 0. Thus Pmax for |ψ〉 equals to that for |AC〉, where

|AC〉 = λ0|00〉 + λ1e
iϕ|10〉 + λ2|11〉. (5.27)

Using Eq.(5.9), therefore, one can easily compute Pmax, which is

Pmax =
1

2

[
1 +

√
1 − 4J2

]
. (5.28)

J3 6= 0 and J1 = J2 = J4 = J5 = 0

In this case Pmax for |ψ〉 equals to that for |AB〉, where

|AB〉 = λ0|00〉 + λ1e
iϕ|10〉 + λ3|11〉. (5.29)

Thus Pmax for |ψ〉 is

Pmax =
1

2

[
1 +

√
1 − 4J3

]
. (5.30)

5.3.4 Type2b (generalized GHZ states):

J4 6= 0, J1 = J2 = J3 = J5 = 0

In this case we have λ1 = λ2 = λ3 = 0 and |ψ〉 becomes

|ψ〉 = λ0|000〉 + λ4|111〉 (5.31)
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with λ2
0 + λ2

4 = 1. Then it is easy to show

~r1 = Tr
[
ρA~σ

]
= (0, 0, λ2

0 − λ2
4) (5.32)

~r2 = Tr
[
ρB~σ

]
= (0, 0, λ2

0 − λ2
4)

gij = Tr
[
ρABσi ⊗ σj

]
=




0 0 0

0 0 0

0 0 1


 .

Thus Pmax reduces to

Pmax =
1

4
max

|~s1|=|~s2|=1

[
1 + (λ2

0 − λ2
4)(s1z + s2z) + s1zs2z

]
. (5.33)

Since Eq.(5.33) is simple, we do not need to solve Eq.(5.23) for the maximization. If

λ0 > λ4, the maximization can be achieved by simply choosing ~s1 = ~s2 = (0, 0, 1). If

λ0 < λ4, we choose ~s1 = ~s2 = (0, 0,−1). Thus we have

Pmax = max(λ2
0, λ

2
4). (5.34)

In order to express Pmax in Eq.(5.34) in terms of LU-invariants we follow the

following procedure. First we note

Pmax =
1

2

[
(λ2

0 + λ2
4) + |λ2

0 − λ2
4|
]
. (5.35)

Since |λ2
0 − λ2

4| =
√

(λ2
0 + λ2

4)
2 − 4λ2

0λ
2
4 =

√
1 − 4J4, we get finally

Pmax =
1

2

[
1 +

√
1 − 4J4

]
. (5.36)

5.3.5 Type3a (tri-Bell states)

In this case we have λ1 = λ4 = 0 and |ψ〉 becomes

|ψ〉 = λ0|000〉+ λ2|101〉+ λ3|110〉 (5.37)

with λ2
0 + λ2

2 + λ2
3 = 1. If we take LU-transformation σx in the first-qubit, |ψ〉 is

changed into |ψ′〉 which is usual W-type state[65] as follows:

|ψ′〉 = λ0|100〉+ λ3|010〉+ λ2|001〉. (5.38)

The LU-invariants in this type are

J1 = λ2
2λ

2
3 J2 = λ2

0λ
2
2 (5.39)

J3 = λ2
0λ

2
3 J5 = 2λ2

0λ
2
2λ

2
3.
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Then it is easy to derive a relation

J1J2 + J1J3 + J2J3 =
√
J1J2J3 =

1

2
J5. (5.40)

Recently, Pmax for |ψ′〉 is computed analytically in Ref.[66] by solving the La-

grange multiplier equations (5.23) explicitly. In order to express Pmax explicitly we

first define

r1 = λ2
3 + λ2

2 − λ2
0 (5.41)

r2 = λ2
0 + λ2

2 − λ2
3

r3 = λ2
0 + λ2

3 − λ2
2

ω = 2λ0λ3.

Also we define

a = max(λ0, λ2, λ3) (5.42)

b = mid(λ0, λ2, λ3)

c = min(λ0, λ2, λ3).

Then Pmax is expressed differently in two different regions as follows. If a2 ≥ b2 + c2,

Pmax becomes

P>
max = a2 = max(λ2

0, λ
2
2, λ

2
3). (5.43)

In order to express Pmax in terms of LU-invariants we express Eq.(5.43) differently

as

P>
max =

1

4

[
(λ2

0 + λ2
3 + λ2

2) + |λ2
0 + λ2

3 − λ2
2| + |λ2

0 − λ2
3 + λ2

2| + |λ2
0 − λ2

3 − λ2
2|
]
.

(5.44)

Using equalities

|λ2
0 + λ2

3 − λ2
2| =

√
1 − 4λ2

0λ
2
2 − 4λ2

2λ
2
3 =

√
1 − 4(J1 + J2) (5.45)

|λ2
0 − λ2

3 + λ2
2| =

√
1 − 4λ2

0λ
2
3 − 4λ2

2λ
2
3 =

√
1 − 4(J1 + J3)

|λ2
0 − λ2

3 − λ2
2| =

√
1 − 4λ2

0λ
2
2 − 4λ2

0λ
2
3 =

√
1 − 4(J2 + J3),

we can express Pmax in Eq.(5.43) as follows:

P>
max =

1

4

[
1 +

√
1 − 4(J1 + J2) +

√
1 − 4(J1 + J3) +

√
1 − 4(J2 + J3)

]
. (5.46)
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If a2 ≤ b2 + c2, Pmax becomes

P<
max =

1

4

[
1 +

ω
√

(ω2 + r21 − r23)(ω
2 + r22 − r23) − r1r2r3

ω2 − r23

]
. (5.47)

It was shown in Ref.[66] that Pmax = 4R2, where R is a circumradius of the triangle

λ0, λ2 and λ3. When a2 ≤ b2 + c2, one can show easily r1 =
√

1 − 4(J2 + J3),

r2 =
√

1 − 4(J1 + J3), r3 =
√

1 − 4(J1 + J2), and ω = 2
√
J3. Using ω2−r23−r1r2r3 =

8λ2
0λ

2
2λ

2
3, One can show easily that Pmax in Eq.(5.47) in terms of LU-invariants

becomes

P<
max =

4
√
J1J2J3

4(J1 + J2 + J3) − 1
. (5.48)

Let us consider λ0 = 0 limit in this type. Then we have J2 = J3 = 0. Thus P>
max

reduces to (1/2)(1+
√

1 − 4J1) which exactly coincides with Eq.(5.25). By same way

one can prove that Eq.(5.46) has correct limits to various other types.

5.3.6 Type3b (extended GHZ states)

This type consists of 3 types, i.e. λ1 = λ2 = 0, λ1 = λ3 = 0 and λ2 = λ3 = 0.

λ1 = λ2 = 0

In this case the state (5.12) becomes

|ψ〉 = λ0|000〉+ λ3|110〉+ λ4|111〉 (5.49)

with λ2
0 + λ2

3 + λ2
4 = 1. The non-vanishing LU-invariants are

J3 = λ2
0λ

2
3, J4 = λ2

0λ
2
4. (5.50)

Note that J3 + J4 is expressed in terms of solely λ0 as

J3 + J4 = λ2
0(1 − λ2

0). (5.51)

Eq.(5.49) can be re-written as

|ψ〉 = λ0|00q1〉 +
√

1 − λ2
0|11q2〉 (5.52)

where |q1〉 = |0〉 and |q2〉 = (1/
√

1 − λ2
0)(λ3|0〉 + λ4|1〉) are normalized one qubit

states. Thus, from Ref.[66], Pmax for |ψ〉 is

Pmax = max
(
λ2

0, 1 − λ2
0

)
=

1

2

[
1 +

√
(1 − 2λ2

0)
2

]
. (5.53)
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With an aid of Eq.(5.51) Pmax in Eq.(5.53) can be easily expressed in terms of LU-

invariants as following:

Pmax =
1

2

[
1 +

√
1 − 4(J3 + J4)

]
. (5.54)

If we take λ3 = 0 limit in this type, we have J3 = 0, which makes Eq.(5.54) to be

(1/2)(1 +
√

1 − 4J4). This exactly coincides with Eq.(5.36).

λ1 = λ3 = 0

In this case |ψ〉 and LU-invariants are

|ψ〉 = λ0|0q10〉 +
√

1 − λ2
0|1q21〉 (5.55)

and

J2 = λ2
0λ

2
2, J4 = λ2

0λ
2
4 (5.56)

where |q1〉 = |0〉, |q2〉 = (1/
√

1 − λ2
0)(λ2|0〉+λ4|1〉), and λ2

0 +λ2
2 +λ2

4 = 1. The same

method used in the previous subsection easily yields

Pmax =
1

2

[
1 +

√
1 − 4(J2 + J4)

]
. (5.57)

One can show that Eq.(5.57) has correct limits to other types.

λ2 = λ3 = 0

In this case |ψ〉 and LU-invariants are

|ψ〉 =
√

1 − λ2
4|q100〉 + λ4|q211〉 (5.58)

and

J1 = λ2
1λ

2
4, J4 = λ2

0λ
2
4 (5.59)

where |q1〉 = (1/
√

1 − λ2
4)(λ0|0〉 + λ1e

iϕ|1〉), |q2〉 = |1〉, and λ2
0 + λ2

1 + λ2
4 = 1. It is

easy to show

Pmax =
1

2

[
1 +

√
1 − 4(J1 + J4)

]
. (5.60)

One can show that Eq.(5.60) has correct limits to other types.

64
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5.3.7 Type4a (λ4 = 0)

In this case the state vector |ψ〉 in Eq.(5.12) reduces to

|ψ〉 = λ0|000〉 + λ1e
iϕ|100〉 + λ2|101〉 + λ3|110〉 (5.61)

with λ2
0 + λ2

1 + λ2
2 + λ2

3 = 1. The non-vanishing LU-invariants are

J1 = λ2
2λ

2
3 J2 = λ2

0λ
2
2 (5.62)

J3 = λ2
0λ

2
3 J5 = 2λ2

0λ
2
2λ

2
3.

From Eq.(5.62) it is easy to show

√
J1J2J3 =

1

2
J5. (5.63)

The remarkable fact deduced from Eq.(5.62) is that the non-vanishing LU-invariants

are independent of the phase factor ϕ. This indicates that the Groverian measure for

Eq.(5.61) is also independent of ϕ

In order to compute Pmax analytically in this type, we should solve the Lagrange

multiplier equations (5.23) with

~r1 = Tr[ρA~σ] = (2λ0λ1 cosϕ, 2λ0λ1 sinϕ, 2λ2
0 − 1) (5.64)

~r2 = Tr[ρB~σ] = (2λ1λ3 cosϕ,−2λ1λ3 sinϕ, 1 − 2λ2
3)

gij = Tr[ρABσi ⊗ σj ] =




2λ0λ3 0 2λ0λ1 cosϕ

0 −2λ0λ3 2λ0λ1 sinϕ

−2λ1λ3 cosϕ 2λ1λ3 sinϕ λ2
0 − λ2

1 − λ2
2 + λ2

3


 .

Although we have freedom to choose the phase factor ϕ, it is impossible to find

singular values of the matrix g, which makes it formidable task to solve Eq.(5.23).

Based on Ref.[66] and Ref.[67], furthermore, we can conjecture that Pmax for this type

may have several different expressions depending on the domains in parameter space.

Therefore, it may need long calculation to compute Pmax analytically. We would like

to leave this issue for our future research work and the explicit expressions of Pmax

are not presented in this chapter.

5.3.8 Type4b

This type consists of the 2 cases, i.e. λ2 = 0 or λ3 = 0.

65



CHAPTER 5. THREE-QUBIT GROVERIAN MEASURE

λ2 = 0

In this case the state vector |ψ〉 in Eq.(5.12) reduces to

|ψ〉 = λ0|000〉 + λ1e
iϕ|100〉 + λ3|110〉 + λ4|111〉 (5.65)

with λ2
0 + λ2

1 + λ2
3 + λ2

4 = 1. The LU-invariants are

J1 = λ2
1λ

2
4 J3 = λ2

0λ
2
3 J4 = λ2

0λ
2
4. (5.66)

Eq.(5.66) implies that the Groverian measure for Eq.(5.65) is independent of the

phase factor ϕ like type 4a. This fact may drastically reduce the calculation procedure

for solving the Lagrange multiplier equation (5.23). In spite of this fact, however,

solving Eq.(5.23) is highly non-trivial as we commented in the previous type. The

explicit expressions of the Groverian measure are not presented in this chapter and

we hope to present them elsewhere in the near future.

λ3 = 0

In this case the state vector |ψ〉 in Eq.(5.12) reduces to

|ψ〉 = λ0|000〉 + λ1e
iϕ|100〉 + λ2|101〉 + λ4|111〉 (5.67)

with λ2
0 + λ2

1 + λ2
2 + λ2

4 = 1. The LU-invariants are

J1 = λ2
1λ

2
4 J2 = λ2

0λ
2
2 J4 = λ2

0λ
2
4. (5.68)

Eq.(5.68) implies that the Groverian measure for Eq.(5.67) is independent of the

phase factor ϕ like type 4a.

5.3.9 Type4c (λ1 = 0)

In this case the state vector |ψ〉 in Eq.(5.12) reduces to

|ψ〉 = λ0|000〉 + λ2|101〉 + λ3|110〉 + λ4|111〉 (5.69)

with λ2
0 + λ2

2 + λ2
3 + λ2

4 = 1. The LU-invariants in this type are

J1 = λ2
2λ

2
3 J2 = λ2

0λ
2
2 J3 = λ2

0λ
2
3 (5.70)

J4 = λ2
0λ

2
4 J5 = 2λ2

0λ
2
2λ

2
3.

From Eq.(5.70) it is easy to show

J1(J2 + J3 + J4) + J2J3 =
√
J1J2J3 =

1

2
J5. (5.71)
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In this type ~r1, ~r2 and gij defined in Eq.(5.22) are

~r1 = (0, 0, 2λ2
0 − 1) (5.72)

~r2 = (2λ2λ4, 0, λ
2
0 + λ2

2 − λ3
3 − λ2

4)

gij =




2λ0λ3 0 0

0 −2λ0λ3 0

−2λ2λ4 0 1 − 2λ2
2


 .

Like type 4a and type 4b solving Eq.(5.23) is highly non-trivial mainly due to non-

diagonalization of gij . Of course, the fact that the first component of ~r2 is non-zero

makes hard to solve Eq.(5.23) too. The explicit expressions of the Groverian measure

in this type are not given in this chapter.

5.3.10 Type5 (real states): ϕ = 0, π

ϕ = 0

In this case the state vector |ψ〉 in Eq.(5.12) reduces to

|ψ〉 = λ0|000〉+ λ1|100〉+ λ2|101〉+ λ3|110〉+ λ4|111〉 (5.73)

with λ2
0 + λ2

1 + λ2
2 + λ2

3 + λ2
4 = 1. The LU-invariants in this case are

J1 = (λ2λ3 − λ1λ4)
2 J2 = λ2

0λ
2
2 J3 = λ2

0λ
2
3 (5.74)

J4 = λ2
0λ

2
4 J5 = 2λ2

0λ2λ3(λ2λ3 − λ1λ4).

It is easy to show
√
J1J2J3 = J5/2.

ϕ = π

In this case the state vector |ψ〉 in Eq.(5.12) reduces to

|ψ〉 = λ0|000〉 − λ1|100〉+ λ2|101〉+ λ3|110〉+ λ4|111〉 (5.75)

with λ2
0 + λ2

1 + λ2
2 + λ2

3 + λ2
4 = 1. The LU-invariants in this case are

J1 = (λ2λ3 + λ1λ4)
2 J2 = λ2

0λ
2
2 J3 = λ2

0λ
2
3 (5.76)

J4 = λ2
0λ

2
4 J5 = 2λ2

0λ2λ3(λ2λ3 + λ1λ4).

It is easy to show
√
J1J2J3 = J5/2 in this type.

The analytic calculation of Pmax in type 5 is most difficult problem. In addition,

we don’t know whether it is mathematically possible or not. However, the geometric
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Type conditions Pmax

Type I Ji = 0 1

Ji = 0 except J1
1
2

(
1 +

√
1 − 4J1

)

Type II a Ji = 0 except J2
1
2

(
1 +

√
1 − 4J2

)

Ji = 0 except J3
1
2

(
1 +

√
1 − 4J3

)

b Ji = 0 except J4
1
2

(
1 +

√
1 − 4J4

)

a λ1 = λ4 = 0 1
4

“
1+

√
1−4(J1+J2)+

√
1−4(J1+J3)+

√
1−4(J2+J3)

”

if a2 ≥ b2 + c2

4
√
J1J2J3/ (4(J1 + J2 + J3) − 1)

if a2 ≤ b2 + c2

Type III λ1 = λ2 = 0 1
2

(
1 +

√
1 − 4(J3 + J4)

)

b λ1 = λ3 = 0 1
2

(
1 +

√
1 − 4(J2 + J4)

)

λ2 = λ3 = 0 1
2

(
1 +

√
1 − 4(J1 + J4)

)

a λ4 = 0 independent of ϕ: not presented

Type IV b λ2 = 0 independent of ϕ: not presented

λ3 = 0 independent of ϕ: not presented

c λ1 = 0 not presented

Type V ϕ = 0 not presented

ϕ = π not presented

Table 5.1: Summary of Pmax in various types.

interpretation of Pmax presented in Ref.[66] and Ref.[67] may provide us valuable

insight. We hope to leave this issue for our future research work too. The results in

this section is summarized in Table I.

5.4 New Type

5.4.1 standard form

In this section we consider new type in 3-qubit states. The type we consider is

|Φ〉 = a|100〉+ b|010〉+ c|001〉+ q|111〉, a2 + b2 + c2 + q2 = 1. (5.77)

First, we would like to derive the standard form like Eq.(5.12) from |Φ〉. This can be

achieved as following. First, we consider LU-transformation of |Φ〉, i.e. (U⊗11⊗11)|Φ〉,
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where

U =
1√

aq + bc

( √
aqeiθ

√
bceiθ

−
√
bc

√
aq

)
. (5.78)

After LU-transformation, we perform Schmidt decomposition following Ref.[68]. Fi-

nally we choose θ to make all λi to be positive. Then we can derive the standard

form (5.12) from |Φ〉 with ϕ = 0 or π, and

λ0 =

√
(ac+ bq)(ab+ cq)

aq + bc
(5.79)

λ1 =

√
abcq√

(ab+ cq)(ac+ bq)(aq + bc)
|a2 + q2 − b2 − c2|

λ2 =
1

λ0
|ac− bq|

λ3 =
1

λ0
|ab− cq|

λ4 =
2
√
abcq

λ0
.

It is easy to prove that the normalization condition a2 + b2 + c2 + q2 = 1 guarantees

the normalization

λ2
0 + λ2

1 + λ2
2 + λ2

3 + λ2
4 = 1. (5.80)

Since |Φ〉 has three free parameters, we need one more constraint between λi’s. This

additional constraint can be derived by trial and error. The explicit expression for

this additional relation is

λ2
0(λ

2
2 + λ2

3 + λ2
4) =

1

4
− λ2

1

λ2
4

(λ2
2 + λ2

4)(λ
2
3 + λ2

4). (5.81)

Since all λi’s are not vanishing but there are only three free parameters, |Φ〉 is not

involved in the types discussed in the previous section.

69
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5.4.2 LU-invariants

Using Eq.(5.79) it is easy to derive LU-invariants which are

J1 = (λ1λ4 − λ2λ3)
2 =

1

(ab+ cq)2(ac+ bq)2
(5.82)

×
[
2abcq|a2 + q2 − b2 − c2| − (aq + bc)|(ab− cq)(ac− bq)|

]2

J2 = λ2
0λ

2
2 = (ac− bq)2

J3 = λ2
0λ

2
3 = (ab− cq)2

J4 = λ2
0λ

2
4 = 4abcq

J5 = λ2
0

(
J1 + λ2

2λ
2
3 − λ2

1λ
2
4

)
.

One can show directly that J5 = 2
√
J1J2J3. Since |Φ〉 has three free parameters, there

should exist additional relation between Ji’s. However, the explicit expression may

be hardly derived. In principle, this constraint can be derived as following. First,

we express the coefficients a, b, c, and q in terms of J1, J2, J3 and J4 using first

four equations of Eq.(5.82). Then the normalization condition a2 + b2 + c2 + q2 = 1

gives explicit expression of this additional constraint. Since, however, this procedure

requires the solutions of quartic equation, it seems to be hard to derive it explicitly.

Since J1 contains absolute value, it is dependent on the regions in the parameter

space. Direct calculation shows that J1 is

J1 =





(aq − bc)2 when (a2 + q2
− b2

− c2)(ab − cq)(ac − bq) ≥ 0

(aq − bc)2[1 + 2(ab − cq)(ac − bq)(aq + bc)/(ab + cq)(ac + bq)(aq − bc)]2

when (a2 + q2
− b2

− c2)(ab − cq)(ac − bq) < 0.

(5.83)

Since Pmax is manifestly LU-invariant quantity, it is obvious that it also depends on

the regions on the parameter space.

5.4.3 calculation of Pmax

Pmax for state |Φ〉 in Eq.(5.77) has been analytically computed recently in Ref.[67].

It turns out that Pmax is differently expressed in three distinct ranges of definition in

parameter space. The final expressions can be interpreted geometrically as discussed

in Ref.[67]. To express Pmax explicitly we define

r1 ≡ b2 + c2 − a2 − q2 r2 ≡ a2 + c2 − b2 − q2 (5.84)

r3 ≡ a2 + b2 − c2 − q2 ω ≡ ab+ qc µ ≡ ab− qc.
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The first expression of Pmax, which can be expressed in terms of circumradius of

convex quadrangle is

P (Q)
max =

4(ab+ qc)(ac+ qb)(aq + bc)

4ω2 − r23
. (5.85)

The second expression of Pmax, which can be expressed in terms of circumradius of

crossed-quadrangle is

P (CQ)
max =

(ab− cq)(ac− bq)(bc− aq)

4S2
x

(5.86)

where

S2
x =

1

16
(a+ b+ c+ q)(a+ b− c− q)(a− b+ c− q)(−a+ b+ c− q). (5.87)

The final expression of Pmax corresponds to the largest coefficient:

P (L)
max = max(a2, b2, c2, q2) =

1

4
(1 + |r1| + |r2| + |r3|) . (5.88)

The applicable domain for each Pmax is fully discussed in Ref.[67].

Now we would like to express all expressions of Pmax in terms of LU-invariants. For

the simplicity we choose a simplified case, that is (a2+q2−b2−c2)(ab−cq)(ac−bq) ≥ 0.

Then it is easy to derive

r21 = 1 − 4(J2 + J3 + J4) r22 = 1 − 4(J1 + J3 + J4) (5.89)

r23 = 1 − 4(J1 + J2 + J4) ω2 = J3 + J4.

Then it is simple to express P
(Q)
max and P

(CQ)
max as following:

P (Q)
max =

4
√

(J1 + J4)(J2 + J4)(J3 + J4)

4(J1 + J2 + J3 + 2J4) − 1
(5.90)

P (CQ)
max =

4
√
J1J2J3

4(J1 + J2 + J3 + J4) − 1
.

If we take q = 0 limit, we have λ4 = J4 = 0. Thus P
(Q)
max and P

(CQ)
max reduce to

4
√
J1J2J3/(4(J1 + J2 + J3) − 1), which exactly coincides with P<

max in Eq.(5.48).

Finally Eq.(5.89) makes P
(L)
max to be

P (L)
max =

1

4

“

1 +
p

1 − 4(J2 + J3 + J4) +
p

1 − 4(J1 + J3 + J4) +
p

1 − 4(J1 + J2 + J4)
”

.

(5.91)

One can show that P
(L)
max equals to P>

max in Eq.(5.46) when q = 0. This indicates that

our results (5.90) and (5.91) have correct limits to other types of three-qubit system.
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5.5 conclusion

We tried to compute the Groverian measure analytically in the various types of three-

qubit system. The types we considered in this chapter are given in Ref.[68] for the

classification of the three-qubit system.

For type 1, type 2 and type 3 the Groverian measures are analytically computed.

All results, furthermore, can be represented in terms of LU-invariant quantities. This

reflects the manifest LU-invariance of the Groverian measure.

For type 4 and type 5 we could not derive the analytical expressions of the mea-

sures because the Lagrange multiplier equations (5.23) is highly difficult to solve.

However, the consideration of LU-invariants indicates that the Groverian measure in

type 4 should be independent of the phase factor ϕ. We expect that this fact may

drastically simplify the calculational procedure for obtaining the analytical results of

the measure in type 4. The derivation in type 5 is most difficult problem. However, it

might be possible to get valuable insight from the geometric interpretation of Pmax,

presented in Ref.[66] and Ref.[67]. We would like to revisit type 4 and type 5 in the

near future.

We think that the most important problem in the research of entanglement is

to understand the general properties of entanglement measures in arbitrary qubit

systems. In order to explore this issue we would like to extend, as a next step, our

calculation to four-qubit states. In addition, the Groverian measure for four-qubit

pure state is related to that for two-qubit mixed state via purification[92]. Although

general theory for entanglement is far from complete understanding at present stage,

we would like to go toward this direction in the future.
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Chapter 6

Toward an understanding of

entanglement for generalized

n-qubit W-states

Entanglement of quantum states [124] plays an important role in quantum informa-

tion, computation and communication(QICC). It is a genuine physical resource for

the teleportation process [19, 57] and makes it possible that the quantum computer

outperforms classical one [32, 97]. It also plays a crucial role in quantum crypto-

graphic schemes [21, 125]. These phenomena have provided the basis for the devel-

opment of modern quantum information science.

Quantum entanglement is a rich field of research. A better understanding of quan-

tum entanglement, of ways it is characterized, created, detected, stored and manipu-

lated, is theoretically the most basic task of the current QICC research. In bipartite

case entanglement is relatively well understood, while in multipartite case even quan-

tifying entanglement of pure states is a great challenge.

The geometric measure of entanglement can be considered as one of the most

reliable quantifiers of multipartite entanglement [41, 42, 43]. It depends on Pmax,

the maximal overlap of a given state with the nearest product state, and is defined

by the formula Eg(ψ) = 1 − Pmax [43]. The same overlap Pmax, known also as the

injective tensor norm of ψ [111], is the maximal probability of success in the Grover’s

search algorithm [24] when the state ψ is used as an input state. This relationship

between the success probability of the quantum search algorithm and the amount of
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GENERALIZED N-QUBIT W-STATES

entanglement of the input state allows oneself to define an operational entanglement

measure known as Groverian entanglement [46, 93].

The maximal overlap Pmax is a useful quantity and has several practical applica-

tions. It has been used to study quantum phase transitions in spin models [126, 127]

and to quantify the distinguishability of multipartite states by local means [128].

Moreover, Pmax exhibits interesting connections with entanglement witnesses and

can be efficiently estimated in experiments [129]. Recently, it has been shown that

the maximal overlap is the largest coefficient of the generalized Schmidt decompo-

sition and the nearest product state uniquely defines the factorizable basis of the

decomposition [130, 131].

In spite of its usefulness one obstacle to use Pmax fully in quantum information

theories is the fact that it is difficult to compute it analytically for generic states. The

usual maximization method generates a system of nonlinear equations [43]. Thus, it is

important to develop a technique for the computation of Pmax [64, 132, 133, 134, 135].

Theorem I of Ref.[64] enables us to compute Pmax for n-qubit pure states by mak-

ing use of (n− 1)-qubit reduced states. In the case of three-qubit states the theorem

effectively changes the nonlinear eigenvalue equations into the linear form. Owing to

this essential simplification Pmax for the generalized three-qubit W-state [65, 136]

was computed analytically in Ref.[66]. Furthermore, in Ref.[67] Pmax was found for

three-qubit quadrilateral states with an elegant geometric interpretation. More re-

cently, based on the analytical results of Ref.[66, 67] and the classification of Ref.[68],

Pmax for various types of three-qubit states was computed analytically and expressed

in terms of local unitary(LU) invariants [69].

In general, the calculation of the multi-partite entanglement is confronted with

great difficulties. Furthermore, even if we know explicit expressions of entanglement

measure, the separation of the applicable domains is also a nontrivial task [67]. There-

fore, there is a good reason to consider first some solvable cases that allow analytic

solutions and clear separations of the validity domains. Later, these results could be

extended, either analytically or numerically, for a wider class of multi-qubit states. In

the light of these ideas we consider one- and two-parametric n-qubit W-type states

with n ≥ 4 in this chapter.

The chapter is organized as follows. In Sec. 6.1 we clarify our tasks and notations.

In Sec. 6.2 we review the calculational tool introduced in Ref.[64, 66, 67] and explain

how the Lagrange multiplier method gives simple solution to the one-parameter cases.

This method is used Sec. 6.3 for the derivation of Pmax for one-parameter W-states

in 4-qubit, 5-qubit and 6-qubit systems. In this section the analytical results are

compared with numerical data. In Sec. 6.4 based on the analytical results of the
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previous section we compute Pmax for an one-parameter W-state in arbitrary n-qubit

system. In Sec. 6.5 we derive Pmax for two-parameter W-states in 4-qubit system by

adopting the usual maximization technique. In Sec. 6.6 we analyze two-parameter

results by considering several particular cases. In Sec. 6.7 we discuss the possibility

of extensions of the results to arbitrary W states and the existence of a geometrical

interpretation.

6.1 Summary of Tasks

Let |ψ〉 be a pure state of an n-party system H = H1 ⊗ H2 ⊗ · · · ⊗ Hn , where the

dimensions of the individual state spaces Hk are finite but otherwise arbitrary. The

maximal overlap of |ψ〉 is given by

Pmax(ψ) ≡ max
|q1〉···|qn〉

|〈q1|〈q2| · · · 〈qn|ψ〉|2, (6.1)

where the maximum is taken over all single-system normalized state vectors |qk〉 ∈
Hk, and it is understood that |ψ〉 is normalized.

Let us consider now n-qubit W-type state

|Wn〉 = a1|10 · · · 0〉 + a2|010 · · ·0〉 + · · · + an|0 · · · 01〉, (6.2)

where the labels within each ket refer to qubits 1, 2, · · · , n in that order.

In this chapter we will compute analytically Pmax in the following two cases:

1)for the one-parametric |Wn〉 when a1 = · · · = an−1 ≡ a and an ≡ q

2)for the two-parametric |W4〉 when a1 = a, a2 = b, a3 = a4 = q.

To ensure the calculational validity we use the result of [93], which has shown

that Pmax = (1 − 1/n)n−1 when a1 = a2 = · · · = an. Thus, the final results of the

one-parametric case should agree with the following:

• If a = q = 1/
√
n, then Pmax should be equal to (1 − 1/n)n−1.

• If q = 0, then |Wn〉 becomes |Wn−1〉⊗|0〉 and, as a result, Pmax should be equal

to (1 − 1/(n− 1))n−2.

For the two-parametric case Pmax(W4) should have a correct limit when either

a or b vanishes. At a = 0 we have |W4〉 = |0〉 ⊗ |W3〉 and thus the maximal overlap

should be expressed in terms of the circumradius of the isosceles triangle with sides

b, q, q [66].
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6.2 Calculation Tool

For a pure state of two qubits Pmax is given by

Pmax =
1

2

[
1 +

√
1 − 4 detρA

]
, (6.3)

where ρA is reduced density matrix, i.e. TrBρ
AB. Therefore, the Bell (and their LU-

equivalent) states have the minimal (Pmax = 1/2) while product states have the

maximal (Pmax = 1) overlap.

The explicit dependence of Pmax on state parameters for the generalized three-

qubit W-state

|W3〉 = a1|100〉 + a2|010〉+ a3|001〉 (6.4)

was computed in Ref.[66]. In order to express explicitly Pmax(W3) in terms of state

parameters, we define a set {α, β, γ} as the set {a1, a2, a3} in decreasing order. Then

Pmax for the generalized W-state can be expressed in a form

Pmax(W3) =

{
4R2

W when α2 ≤ β2 + γ2

α2 when α2 ≥ β2 + γ2
(6.5)

where RW is the circumradius of the triangle with sides a1, a2, a3. Similar calcula-

tion procedure can be applied to the 3-qubit quadrilateral state. It has been shown

in Ref.[67] that for this case Pmax is expressed in terms of the circumradius of a

convex quadrangle. These two separate results strongly suggest that Pmax for an

arbitrary pure state has its own geometrical meaning. If we are able to know this

meaning completely, then our understanding on the multipartite entanglement would

be greatly enhanced.

Now, we briefly review how to derive the analytic result (6.5) because it plays

crucial role in next two sections. In Ref.[66] Pmax for 3-qubit state is expressed as

Pmax =
1

4
max

|~s1|=|~s2|=1
[1 + ~s1 · ~r1 + ~s2 · ~r2 + gijs1is2j ] (6.6)

where ~s1 and ~s2 are Bloch vectors of the single-qubit states. In Eq.(6.6) ~r1 = Tr[ρA~σ],

~r2 = Tr[ρB~σ] and gij = Tr[ρABσi⊗σj ], where ρA, ρB and ρAB are appropriate partial

traces of ρABC ≡ |W3〉〈W3| and σi are usual Pauli matrices. The explicit expressions

of ~r1, ~r2 and gij are given in Ref.[66]. Due to maximization over ~s1 and ~s2 in Eq.(6.6)

we can compute ~s1 and ~s2 by solving the Lagrange multiplier equations

~r1 + g~s2 = λ1~s1, ~r2 + gT~s1 = λ2~s2, (6.7)
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where λ1 and λ2 are Lagrange multiplier constants. Now, we let s1y = s2y = 0 for

simplicity, because those give only irrelevant overall phase factor to 〈q1|〈q2|〈q3|W3〉.
After eliminating the Lagrange multiplier constants, one can show that Eq.(6.7)

reduces to two equations. Examining these two remaining equations, one can show

that ~s1 and ~s2 have a following relation to each other:

~s1(a1, a2, a3) = ~s2(a2, a1, a3). (6.8)

Using this relation, one can combine these two equations into single one expressed in

terms of solely s1z in a final form

√
1 − s21z(a1, a2, a3)

s1z(a1, a2, a3)
=
ω
√

1 − s21z(a2, a1, a3)

r1 − r3s1z(a2, a1, a3)
(6.9)

where r1 = a2
2 +a2

3−a2
1, r2 = a2

1 +a2
3−a2

2, r3 = a2
1 +a2

2−a2
3 and ω = 2a1a2. Defining

a1 = a2 ≡ a and a3 ≡ q again, one can solve Eq.(6.9) easily in a form

s1z = s2z =
r1

ω + r3
=

q2

4a2 − q2
(6.10)

s1x = s2x =
√

1 − s21z =
2
√

2a

4a2 − q2

√
2a2 − q2.

Inserting Eq.(6.10) into Eq.(6.6), one can compute Pmax for |W3〉 with a1 = a2 = a

and s3 = q, whose final expression is simply

Pmax =
(1 − q2)2

2 − 3q2
. (6.11)

Eq.(6.11) is consistent with Eq.(6.5) when q2 ≤ 2a2. When q = 0, Eq.(6.11) gives

Pmax = 1/2 which corresponds to that of 2-qubit EPR state. When q = 1/
√

3,

Eq.(6.11) gives Pmax = 4/9, which is also consistent with the result of Ref.[93].

6.3 Four, five and six qubit W-type states: one-

parametric cases

The method described in the previous section may enable us to compute Pmax of

four-qubit W-type states. For the case of arbitrary four-qubit systems Pmax can be

represented in a form

Pmax =
1

8
max

|~s1|=|~s2|=|~s3|=1

[
1 + ~s1 · ~r1 + ~s2 · ~r2 + ~s3 · ~r3 + s1is2jg

(3)
ij

+s1is3jg
(2)
ij + s2is3jg

(1)
ij + s1is2js3khijk

]
, (6.12)
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where

~r1 = Tr[ρA~σ], ~r2 = Tr[ρB~σ], ~r3 = Tr[ρC~σ], (6.13)

g
(3)
ij = Tr[ρABσi ⊗ σj ], g

(2)
ij = Tr[ρACσi ⊗ σj ], g

(1)
ij = Tr[ρBCσi ⊗ σj ]

hijk = Tr[ρABCσi ⊗ σj ⊗ σk].

For the case of the generalized four-qubit W-state all vectors ~rk are collinear, all

matrices g(k) are diagonal and the vectors ~rk are eigenvectors of the matrices g(k) as

following:

~rk = (0, 0, rk), g
(k)
ij =




ωk 0 0

0 ωk 0

0 0 −r̃k


 , k = 1, 2, 3. (6.14)

In Eq.(6.14) we defined various quantities as following:

rk = a2
1 + a2

2 + a2
3 + a2

4 − 2a2
k, ω1 = 2a2a3, ω2 = 2a1a3, ω3 = 2a1a2. (6.15)

r̃1 = a2
2 + a2

3 − a2
1 − a2

4, r̃2 = a2
1 + a2

3 − a2
2 − a2

4, r̃3 = a2
1 + a2

2 − a2
3 − a2

4.

In addition, the non-vanishing components of hijk are

h113 = h223 = ω3 h131 = h232 = ω2 h311 = h322 = ω1 h333 = −r4.
(6.16)

Due to the maximization in Eq.(6.12) the Bloch vectors should satisfy the following

Lagrange multiplier equations:

r1i + g
(3)
ij s2j + g

(2)
ij s3j + hijks2js3k = Λ1s1i (6.17)

r2i + g
(3)
ji s1j + g

(1)
ij s3j + hkijs1ks3j = Λ2s2i

r3i + g
(2)
ji s1j + g

(1)
ji s2j + hjkis1js2k = Λ3s3i.

Now we put s1y = s2y = s3y = 0 as before. After removing the Lagrange multiplier

constants Λ1, Λ2 and Λ3, one can show that Eq.(6.17) reduce to the following three

equations:

s1x [r1 − r̃3s2z − r̃2s3z + ω1s2xs3x − r4s2zs3z] = s1z [ω2s3x(1 + s2z) + ω3s2x(1 + s3z)]

s2x [r2 − r̃3s1z − r̃1s3z + ω2s1xs3x − r4s1zs3z] = s2z [ω1s3x(1 + s1z) + ω3s1x(1 + s3z)]

s3x [r3 − r̃1s2z − r̃2s1z + ω3s1xs2x − r4s1zs2z] = s3z [ω2s1x(1 + s2z) + ω1s2x(1 + s1z)] .

(6.18)
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Eq.(6.18) implies that the Bloch vectors have the following symmetries:

~s1(a1, a2, a3, a4) = ~s2(a2, a1, a3, a4) = ~s3(a3, a2, a1, a4) (6.19)

~s1(a1, a2, a3, a4) = ~s1(a1, a3, a2, a4)

~s2(a1, a2, a3, a4) = ~s2(a3, a2, a1, a4)

~s3(a1, a2, a3, a4) = ~s3(a2, a1, a3, a4).

Therefore, one can compute all Bloch vectors if one of them is known. Using the

symmetries (6.19), we can make single equation from Eq.(6.18) which is expressed in

terms of s1z only in a form

s1x(a1, a2, a3, a4)

s1z(a1, a2, a3, a4)
=
P (a1, a2, a3, a4)

Q(a1, a2, a3, a4)
(6.20)

where

P (a1, a2, a3, a4) = ω2

√
1 − s21z(a3, a2, a1, a4) [1 + s1z(a2, a1, a3, a4)]

+ω3

√
1 − s21z(a2, a1, a3, a4) [1 + s1z(a3, a2, a1, a4)]

Q(a1, a2, a3, a4) = r1 − r̃3s1z(a2, a1, a3, a4) − r̃2s1z(a3, a2, a1, a4)

+ω1

√
1 − s21z(a2, a1, a3, a4)

√
1 − s21z(a3, a2, a1, a4)

−r4s1z(a2, a1, a3, a4)s1z(a3, a2, a1, a4).

Defining a1 = a2 = a3 ≡ a and a4 ≡ q, one can solve Eq.(6.20) easily. The final

expressions of solutions are

s1z = s2z = s3z =
1

9a2 − q2
(6.21)

s1x = s2x = s3x =
√

1 − s21z =
2
√

6a

9a2 − q2

√
3a2 − q2.

Inserting Eq.(6.21) into Eq.(6.12), one can compute Pmax for |W4〉 with a1 = a2 =

a3 ≡ a and a4 ≡ q whose final expression is

Pmax =
22(1 − q2)3

(3 − 4q2)2
. (6.22)

Eq.(6.21) implies that Pmax in Eq.(6.22) is valid when q2 ≤ 3a2. When q = 0, Pmax

becomes 4/9 as expected. When q = 1/2, Pmax becomes 27/64, which is in agreement

with the result of Ref.[93].
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One can repeat the calculation for |W5〉 with a1 = a2 = a3 = a4 ≡ a and a5 = q.

Then the final expression of Pmax becomes

Pmax =
33(1 − q2)4

(4 − 5q2)3
. (6.23)

When q = 0, Pmax reduces to 27/64 as expected. When q = 1/
√

5, Pmax reduces to

(4/5)4. By the same way Pmax for |W6〉 can be written as

Pmax =
44(1 − q2)5

(5 − 6q2)4
. (6.24)

Fig. 1 is a plot of q-dependence of Pmax for |W4〉, |W5〉 and |W6〉. The black dots

are numerical data computed by the numerical technique exploited in Ref.[93]. The

red solid and red dotted lines are Eq.(6.22), Eq.(6.23) and Eq.(6.24) when q ≤ 1/
√

2

and q ≥ 1/
√

2 respectively. As expected the numerical data are in perfect agreement

with Eq.(6.22), Eq.(6.23) and Eq.(6.24) in the applicable domain, i.e. q2 ≤ (n− 1)a2

for |Wn〉. Outside the applicable domain (q2 ≥ 1/
√

2) the numerical data are in

disagreement with these equations.

6.4 General multi-qubit W-type states:

one-parametric cases

From Eq.(6.11), (6.22), (6.23) and (6.24) one can guess that Pmax for Wn is (a1 =

· · · = an−1 ≡ a, an ≡ q)

Pmax(n, q) = (1 − q2)n−1

(
n− 2

(n− 1) − nq2

)n−2

. (6.25)

Using this result, one can straightforwardly construct the nearest product state to

|Wn〉. After some algebra, when q2 ≤ (n − 1)a2, one can show that the analytic

expression of the nearest product state is |q1〉 ⊗ |q2〉 ⊗ · · · ⊗ |qn〉, where

|q1〉 = · · · = |qn−1〉 = (6.26)

1√
(n− 1)2a2 − q2

[√
(n− 1)(n− 2)a|0〉 +

√
(n− 1)a2 − q2eiϕ|1〉

]

|qn〉 =
1√

(n− 1)2a2 − q2

[√
(n− 1)2a2 − (n− 1)q2|0〉 +

√
n− 2qeiϕ|1〉

]

and ϕ is an arbitrary phase factor. When q2 ≥ (n− 1)a2, the nearest product state,

of course, becomes |0 · · · 01〉.
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Figure 6.1: Plot of q-dependence of Pmax for 4-qubit (Fig. 1(a)), 5-qubit (Fig. 1(b)),

and 6-qubit (Fig. 1(c)). The black dots are numerical data of Pmax. The red solid lines

are result of Eq.(6.25) in the applicable domain, 0 ≤ q ≤ 1/
√

2. The red dotted lines

are result of Eq.(6.25) outside the applicable domain. The blue solid lines are plot of

max(a2, q2) = q2 outside the applicable domain. This figures strongly suggest that

Pmax for |Wn〉 is Eq.(6.25) when q ≤ 1/
√

2 and max(a2, q2) = q2 when q ≥ 1/
√

2.

Now, we present a simple proof for both equations (6.25) and (6.26). It is easy to

check

〈q1q2 · · · qn−1|Wn〉 = e−iϕ
√
Pmax|qn〉, 〈q2q3 · · · qn−1qn|Wn〉 = e−iϕ

√
Pmax|q1〉.

(6.27)

The second equation in (6.27) is invariant under the permutations (q1 ↔ qj , j =

2, 3, · · ·n− 1). Thus, the product state satisfies the stationarity equations of Ref.[43]

and consequently, is the nearest separable state. Accordingly,
√
Pmax is the injective

tensor norm of |Wn〉.
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When q = 0 and q = 1/
√
n, Pmax reduces to (1− 1/(n− 1))n−2 and (1− 1/n)n−1

respectively. Thus, Eq.(6.25) is perfectly in agreement with the result of Ref.[93].

Another interesting point in Eq.(6.25) is that Pmax becomes 1/2 regardless of n

when q = 1/
√

2, the boundary of the applicable domain. This makes us conjecture

that outside the applicable domain Pmax becomes max(a2, q2) = q2 like 3-qubit case.

The blue solid lines in Fig. 1 are plot of q2 at the domain q ≥ 1/
√

2. As we conjecture,

the blue lines are perfectly in agreement of numerical data.

Another consequence of Eq.(6.25) is the entanglement witness Ŵn for an one-

parametric W-type state. Its construction is straightforward as following form:

Ŵn = Pmax(n, q)11 − |Wn(q)〉〈Wn(q)|, (6.28)

where 11 is a unit matrix. Obviously one can show

Tr
(
Ŵn|Wn(q)〉〈Wn(q)|

)
< 0, T r

(
Ŵnρ0

)
≥ 0, (6.29)

where ρ0 is any separable state. Thus, Ŵn is an entanglement witness and allows an

experimental detection of the multipartite entanglement.

6.5 Four-qubit W state: two-parametric cases

In this section we will compute Pmax for the two-parametric |W4〉 given by

|W4〉 = a|1000〉+ b|0100〉+ q|0010〉+ q|0001〉. (6.30)

It seems to be difficult to apply the Lagrange multiplier method directly due to their

non-trivial nonlinearity. Thus, we will adopt the usual maximization method.

The maximum overlap probability Pmax is

Pmax = max
|q1〉|q2〉|q〉

|〈q1|〈q2|〈q|〈q |W4〉|2. (6.31)

Now we define the 1-qubit states as |q1〉 = α0|0〉 + α1|1〉, |q2〉 = β0|0〉 + β1|1〉 and

|q〉 = γ0|0〉 + γ1|1〉. For simplicity, we are assuming that all coefficients are real and

positive. Then, Pmax becomes

Pmax = max
α0,β0,γ0

γ2
0

(
aβ0γ0

√
1 − α2

0 + bα0γ0

√
1 − β2

0 + 2qα0β0

√
1 − γ2

0

)2

.

(6.32)
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Since the maximum value is determined at extremum point, it is useful if the ex-

tremum conditions are derived. This is achieved by differentiating Eq.(6.32), which

leads to

bγ0

√
1 − β2

0 + 2qβ0

√
1 − γ2

0 = aβ0γ0
α0√

1 − α2
0

aγ0

√
1 − α2

0 + 2qα0

√
1 − γ2

0 = bα0γ0
β0√

1 − β2
0

aβ0γ0

√
1 − α2

0 + bα0γ0

√
1 − β2

0 + qα0β0

√
1 − γ2

0 = qα0β0
γ2
0√

1 − γ2
0

.

(6.33)

One can solve the equations by separating α0 from β0, γ0, i.e.,

α0√
1 − α2

0

=
b

a

√
1 − β2

0

β0
+

2q

a

√
1 − γ2

0

γ0

√
1 − α2

0

α0
=
b

a

β0√
1 − β2

0

− 2q

a

√
1 − γ2

0

γ0

√
1 − α2

0

α0
=
q

a

γ0√
1 − γ2

0

− q

a

√
1 − γ2

0

γ0
− b

a

√
1 − β2

0

β0

(6.34)

and one can get the solutions for β0 and γ0 as follows:

β2
0 =

3

2
− 4q2 − a2 + b2

4q2
γ2
0 (6.35)

γ2
0 =

4q2(4q2 − a2 − b2) − 2q2
√

(4q2 − a2 − b2)2 + 12a2b2

(4q2 + b2 − a2)2 − 16q2b2
.

The solution for α0 is obtained by separating β0:

α2
0 =

3

2
− 4q2 + a2 − b2

4q2
γ2
0 . (6.36)

Inserting these extremum solution in Pmax and rationalizing denominator, one gets

Pmax =
2q4

»
(4q2−a2−b2){(4q2−a2−b2)2−36a2b2}+{(4q2−a2−b2)2+12a2b2} 3

2

–

{(4q2−a2−b2)2−4a2b2}2 . (6.37)

Of course, Eq.(6.37) is valid when α2 ≤ β2 + γ2 + δ2, where {α, β, γ, δ} is {a, b, q, q}
with decreasing order. When α2 ≥ β2 + γ2 + δ2, Pmax will be α2 = max(a2, b2).

The dependence of the maximal overlap on state parameters is shown in Fig.2.

The behavior of Pmax in different limits is explained in the next section.
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Figure 6.2: The maximal overlap Pmax vs. the parameters a and b for the 4-qubit

state. The green and blue areas are highly entangled regions and the maximal overlap

is given by Eq.(6.37). The violet(dark orange) area is a slightly entangled region and

the maximal overlap is max(a2, b2). It is minimal (Pmax = 27/64) at a = b = 1/2

which is the W-state and maximal (Pmax = 1) either at a = 1, b = 0 or at a = 0, b = 1

which are product states.

6.6 Special four-qubit W-type states

In this section we consider some special 4-qubit states.

The first one is a = 0 limit. Since |W4〉 = |0〉 ⊗ (b|100〉 + q|010〉 + q|001〉) in this

limit, one can compute Pmax using Eq.(6.5). In this limit Eq.(6.37) gives

Pmax =
4q4

4q2 − b2
(b2 ≤ 2q2). (6.38)

One can show easily that this is perfectly in agreement with Eq.(6.5).

The second special case is a = q limit. In this limit Eq.(6.37) gives

Pmax =
4(1 − b2)3

(3 − 4b2)2
(b2 ≤ 3q2) (6.39)

which is also consistent with Eq.(6.22).
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The last special case is 2q = a+ b limit. Although both denominator and numer-

ator in Eq.(6.37) vanish, their ratio has a finite limit and Pmax takes correct values

in the applicable domain. The applicable domain is defined by the two restrictions

α2 ≤ β2 + γ2 + δ2 and 2q = a+ b. These restrictions together with the normalization

condition impose upper and lower bounds for the parameters a and b

min(a, b) ≥
√

2

6
, max(a, b) ≤

√
2

2
. (6.40)

The maximum overlap probability Pmax is

Pmax =
27

256

(a+ b)4

ab
. (6.41)

The limit a = b = q = 1/2 again yields Pmax=27/64. Another interesting limit is the

case when b(a) is minimal and a(b) is maximal. This limit is reached at a = 3b(b =

3a). Then Eq.(6.41) yields Pmax = 1/2 = α2. These states are first type shared

states[67] and allow perfect teleportation and superdense coding scenario.

6.7 discussion

We have calculated the maximal overlap of one- and two-parametric W-type states

and found their nearest separable states. However, in some sub-region of the param-

eter space one can find the nearest states and corresponding maximal overlaps for

generic W-type states. In fact, the square of any coefficient in Eq.(6.2) is a maximal

overlap in some region of state parameters. It is easy to check that the product state

|01...0k−11k0k+1...0n〉 is a solution of stationarity equation with entanglement eigen-

value
√
Pmax = ak. From previous results one can guess that this solution gives a

true maximum of the overlap if

a2
k ≥ a2

1 + a2
2 + · · · + a2

k−1 + a2
k+1 + · · · + a2

n = 1 − a2
k. (6.42)

Then the maximal overlap in the slightly entangled region can be written readily in

the form

Pmax = max(a2
1, a

2
2, · · · , a2

n) if max(a2
1, a

2
2, · · · , a2

n) ≥ 1

2
. (6.43)

This formula has the following simple interpretation. Equation (6.42) means that the

state is already written in the Schmidt normal form and the maximal overlap takes

the value of the largest coefficient [131].
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Now the question at issue is what is happening if a2
k < 1/2, k = 1, 2, · · · , n. From

these inequalities it follows that

1

2
(a1 + a2 + · · · + an) > max(a1, a2, · · · , an). (6.44)

From any set of such coefficients one can form polygons(polyhedrons). This fact is

an indirect evidence that Pmax has a geometrical meaning. Unfortunately, there is

an obstacle to the goal achievement. The problem is that we have not the answer

for generic states. For example, it is difficult to conclude from Eq.(6.11) that the

expression is the circumradius of a triangle in a particular limit. In general, one

can form many polygons, either convex or crossed, from the set a1, a2, ..., an. Each

of them generates its own geometric quantities that can be treated as the maximal

overlap. This happens because stationarity equations have many solutions in highly

entangled region. And all of these solutions yield the same expression in particular

cases. For example, in Ref.[67] it was shown that all convex and crossed quadrangles

are contracted to the same triangle in particular limits. In conclusion, in order to

find a true geometric interpretation one has to derive Pmax for generic states.

Another(and probably promising) way to get the desired interpretation is the

following. Since the surface (a2
1 − 1/2)(a2

2 − 1/2) · · · (a2
n − 1/2) = 0 separates highly

and slightly entangled regions, one may ask what is happening on this surface. That

is, we are considering polygons whose sides satisfy the equality a2
k = a2

1 + a2
2 + · · ·+

a2
k−1 + a2

k+1 + · · · + a2
n for any k. For n = 3 we perfectly know that corresponding

polygons are right triangles and the center of a circumcircle lies on the largest side

of a right triangle. Then, we can conclude that if the center of the circumcircle is

inside the triangle, then the maximal overlap is the circumradius and otherwise is

the largest coefficient. However, for n ≥ 4 we do not know what are the polygons for

which the square of the largest side is the sum of squares of the remaining coefficients.

If one understands the geometric meaning of this relation, then one finds a clue.

And this clue may enable us to find Pmax for generic W-type states. These type of

analytic expressions can have practical application in QICC and may shed new light

on multipartite entanglement.

All above-mentioned problems owe their origin to the fact that the injective ten-

sor norm is related to the Cayley’s Hyperdeterminant [133]. It is well-known that

this hyperdeterminant has a geometrical interpretation for n = 3 and no such inter-

pretation is known for n ≥ 4 so far. We hope to keep on studying this issue in the

future.
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Chapter 7

Three-tangle for rank-three

mixed states: Mixture of

Greenberger-Horne-Zeilinger,

W, and flipped-W states

Entanglement is a genuine physical resource for the quantum information theories[15].

It is at the heart of the recent much activities on the research of quantum computer.

Although many new results have been derived recently for the entanglement of pure

states[43, 64, 66, 67, 69], entanglement for mixed states is not much understood so

far compared to the pure states. Since, however, the effect of environment generally

changes the pure state into the mixed state, it is highly important to investigate the

entanglement of the mixed states.

Entanglement for the bipartite mixed states, called concurrence, was studied by

Hill and Wootters in Ref.[38] when the density matrix of the state has two or more

zero-eigenvalue. Subsequently, Wootters extended the result of Ref.[38] to the arbi-

trary bipartite mixed states[39] by making use of the time reversal operator of the

spin-1/2 particle appropriately. In addition, the concurrence was used to derive the

purely tripartite entanglement called residual entanglement or three-tangle[71]. For

three-qubit pure state |ψ〉 =
∑1

i,j,k=0 aijk|ijk〉, the three-tangle τ3 becomes[71]

τ3 = 4|d1 − 2d2 + 4d3|, (7.1)
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where

d1 = a2
000a

2
111 + a2

001a
2
110 + a2

010a
2
101 + a2

100a
2
011 (7.2)

d2 = a000a111a011a100 + a000a111a101a010 + a000a111a110a001

+a011a100a101a010 + a011a100a110a001 + a101a010a110a001

d3 = a000a110a101a011 + a111a001a010a100.

The three-tangle is polynomial invariant under the local SL(2,C) transformation[74,

75] and exactly coincides with the modulus of a Cayley’s hyperdeterminant[72, 73].

For the mixed three-qubit state ρ the three-tangle is defined by making use of the

convex roof construction[36, 137] as

τ3(ρ) = min
∑

i

piτ3(ρi), (7.3)

where minimum is taken over all possible ensembles of pure states. The ensemble

corresponding to the minimum of τ3 is called optimal decomposition.

Although the definition of three-tangle for the mixed states is simple as shown

in Eq.(7.3), it is highly difficult to compute it. This is mainly due to the fact that

the construction of the optimal decomposition for the arbitrary state is a formidable

task. Even for the most simple case of rank-two state still we do not know how to

construct the optimal decomposition except very rare cases.

Recently, Ref.[76] has shown how to construct the optimal decomposition for the

rank-2 mixture of Greenberger-Horne-Zeilinger(GHZ) and W states:

ρ(p) = p|GHZ〉〈GHZ| + (1 − p)|W 〉〈W |, (7.4)

where

|GHZ〉 =
1√
2

(|000〉 + |111〉) |W 〉 =
1√
3

(|001〉+ |010〉+ |100〉) . (7.5)

The optimal decomposition for ρ(p) was constructed with use of the fact that τ3(|GHZ〉) =

1, τ3(|W 〉) = 0 and 〈GHZ|W 〉 = 0. Once the optimal decompositions are constructed,

it is easy to compute the three-tangle. For ρ(p) the three-tangle has three-different

expressions depending on the range of p as following:

τ3(ρ(p)) =





0 for 0 ≤ p ≤ p0

gI(p) for p0 ≤ p ≤ p1

gII(p) for p1 ≤ p ≤ 1

(7.6)
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where

gI(p) = p2 − 8
√

6

9

√
p(1 − p)3 gII(p) = 1 − (1 − p)

(
3

2
+

1

18

√
465

)

p0 =
4 3
√

2

3 + 4 3
√

2
∼ 0.6269 p1 =

1

2
+

3

310

√
465 ∼ 0.7087. (7.7)

More recently, this result was extended to the rank-2 mixture of generalized GHZ

and generalized W states in Ref.[78].

The purpose of this chapter is to extend Ref.[76] to the case of rank-3 mixed

states. In this chapter we would like to analyze the optimal decompositions for the

mixture of GHZ, W and flipped W states as

ρ(p, q) = p|GHZ〉〈GHZ| + q|W 〉〈W | + (1 − p− q)|W̃ 〉〈W̃ |, (7.8)

where

|W̃ 〉 =
1√
3

(|110〉+ |101〉 + |011〉) . (7.9)

For simplicity, we will define q as

q =
1 − p

n
, (7.10)

where n is positive integer. Before we go further, it is worthwhile noting that ρ(p, q) =

ρ(p) when n = 1 and therefore, Eq.(7.6) is the three-tangle in this case. When n = ∞,

ρ(p, q) can be constructed from ρ(p) by local-unitary (LU) transformation σx⊗σx⊗σx.

Since the three-tangle is LU-invariant quantity, the three-tangle of ρ(p, q) with n = ∞
is again Eq.(7.6).

Now we start with three-qubit pure state

|Z(p, q, ϕ1, ϕ2)〉 =
√
p|GHZ〉 − eiϕ1

√
q|W 〉 − eiϕ2

√
1 − p− q|W̃ 〉 (7.11)

whose three-tangle is

τ3(p, q, ϕ1, ϕ2) =

∣∣∣∣∣
p2 − 4p

√
q(1 − p− q)ei(ϕ1+ϕ2) − 4

3q(1 − p− q)e2i(ϕ1+ϕ2)

− 8
√

6
9

√
pq3e3iϕ1 − 8

√
6

9

√
p(1 − p− q)3e3iϕ2

∣∣∣∣∣ .

(7.12)

The state |Z(p, q, ϕ1, ϕ2)〉 has several interesting properties. Firstly, the mixed state

ρ(p, q) in Eq.(7.8) can be expressed in terms of |Z(p, q, ϕ1, ϕ2)〉 as following:

ρ(p, q) =
1

3

[
|Z(p, q, 0, 0)〉〈Z(p, q, 0, 0)|+ |Z

(
p, q, 2π

3 ,
4π
3

)
〉〈Z

(
p, q, 2π

3 ,
4π
3

)
|

+|Z
(
p, q, 4π

3 ,
2π
3

)
〉〈Z

(
p, q, 4π

3 ,
2π
3

)
|

]
.(7.13)
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Secondly, |Z(p, q, 0, 0)〉, |Z
(
p, q, 2π

3 ,
4π
3

)
〉 and |Z

(
p, q, 4π

3 ,
2π
3

)
〉 have same three-tangle

as shown from Eq.(7.12) directly. Thirdly, the numerical calculation shows that the

p-dependence of τ3(p, (1 − p)/n, ϕ1, ϕ2) has many zeros depending on ϕ1 and ϕ2,

but the largest zero p = p0 arises when ϕ1 = ϕ2 = 0 regardless of n. It can be

proven rigorously with use of the implicit function theorem. The n-dependence of p0

is given in Table I. Table I indicates that when n increases from n = 2, p0 approaches

to 4 3
√

2/(3 + 4 3
√

2) ∼ 0.6269 from 3/4 = 0.75. This is because of the fact that the

three-tangle for ρ(p, q) should be Eq.(7.6) in the n→ ∞ limit.

When p ≤ p0, one can construct the optimal decomposition by making use of

Eq.(7.13) as following:

ρ

(
p,

1 − p

n

)
=

p

3p0

[
|Z
(
p0,

1 − p0

n
, 0, 0

)
〉〈Z

(
p0,

1 − p0

n
, 0, 0

)
| (7.14)

+|Z
(
p0,

1 − p0

n
,
2π

3
,
4π

3

)
〉〈Z

(
p0,

1 − p0

n
,
2π

3
,
4π

3

)
|

+|Z
(
p0,

1 − p0

n
,
4π

3
,
2π

3

)
〉〈Z

(
p0,

1 − p0

n
,
4π

3
,
2π

3

)
|
]

+
p0 − p

np0
|W 〉〈W | + (n− 1)(p0 − p)

np0
|W̃ 〉〈W̃ |.

Thus, we have vanishing three-tangle in this region:

τ3

[
ρ

(
p,

1 − p

n

)]
= 0 for p ≤ p0. (7.15)

Now, we consider p0 ≤ p ≤ 1 region. When p = p0, Eq.(7.14) implies that the opti-

mal decomposition consists of three pure states |Z
(
p0,

1−p0

n , 0, 0
)
〉, |Z

(
p0,

1−p0

n , 2π
3 ,

4π
3

)
〉,

and |Z
(
p0,

1−p0

n , 4π
3 ,

2π
3

)
〉 with same probability. This fact together with Eq.(7.13)

strongly suggests that the optimal decomposition at p0 ≤ p is described by Eq.(7.13).

As will be shown below, however, this is not true in the full range of p0 ≤ p ≤ 1.

The optimal decomposition (7.13) gives the three-tangle to ρ(p, q) in a form

αI(p) = p2− 4
√
n− 1

n
p(1−p)− 4(n− 1)

3n2
(1−p)2− 8

√
6n
[
1 + (n− 1)3/2

]

9n2

√
p(1 − p)3.

(7.16)

Since the three-tangle for mixed state is defined as a convex roof, αI(p) should be

convex function if it is a correct three-tangle in the range of p0 ≤ p ≤ 1. In order to

check this we compute d2αI/dp
2, which is

d2αI(p)

dp2
=

2

9n2

[
{
9n2 + 36n

√
n− 1 − 12(n− 1)

}
−
√

6n
{
1 + (n− 1)3/2

} 8p2 − 4p− 1√
p3(1 − p)

]
.

(7.17)
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n 1 2 3 10 100 1000

p0 0.6269 0.75 0.7452 0.712 0.6604 0.6382

p1 0.7087 0.9330 0.9250 0.8667 0.7710 0.7298

p∗ 0.8257 0.9618 0.9572 0.9230 0.8650 0.8391

Table 7.1: The n-dependence of p0, p1 and p∗.

Using Eq.(7.17) one can show that d2αI(p)/dp
2 ≤ 0 when p∗ ≤ p ≤ 1. The n-

dependence of p∗ is given in Table I. Thus, we need to convexify αI(p) in the region

p1 ≤ p ≤ 1, where p1 ≤ p∗. The constant p1 will be determined shortly.

For large p region one can construct the optimal decomposition as following:

ρ(p, q) = p|GHZ〉〈GHZ| + 1 − p

n
|W 〉〈W | + (n− 1)(1 − p)

n
|W̃ 〉〈W̃ | (7.18)

= p|GHZ〉〈GHZ| + 1 − p

1 − p1

[
− p1|GHZ〉〈GHZ| + p1|GHZ〉〈GHZ|

+
1 − p1

n
|W 〉〈W | + (n− 1)(1 − p1)

n
|W̃ 〉〈W̃ |

]

=
p− p1

1 − p1
|GHZ〉〈GHZ|

+
1 − p

3(1 − p1)

[
|Z
(
p1,

1 − p1

n
, 0, 0

)
〉〈Z

(
p1,

1 − p1

n
, 0, 0

)
|

+|Z
(
p1,

1 − p1

n
,
2π

3
,
4π

3

)
〉〈Z

(
p1,

1 − p1

n
,
2π

3
,
4π

3

)
|

+|Z
(
p1,

1 − p1

n
,
4π

3
,
2π

3

)
〉〈Z

(
p1,

1 − p1

n
,
4π

3
,
2π

3

)
|
]

which gives the three-tangle in a form

αII(p) =
p− p1

1 − p1
+

1 − p

1 − p1
αI(p1). (7.19)

Note that d2αII(p)/dp
2 = 0. Thus, αII(p) does not violate the convex constraint of

the three-tangle in the large p region. The parameter p1 is determined by minimizing

αII(p), i.e. ∂αII/∂p1 = 0, which gives

4
√

6n
[
1 + (n− 1)3/2

]

9n2

2p1 − 1√
p1(1 − p1)

= 1 +
4
√
n− 1

n
− 4(n− 1)

3n2
. (7.20)

The n-dependence of p1 is given in Table I. As expected p1 is between p0 and
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Figure 7.1: The plot of p-dependence of the Eq.(7.12) for various ϕ1 and ϕ2. We

have chosen ϕ1 and ϕ2 from 0 to 2π as an interval 0.3. The three figures correspond

to n = 2 (Fig. 7.1a), n = 3 (Fig. 7.1b) and n = 10 (Fig. 7.1c) respectively. The

minimum curve is plotted as a thick solid line in each figure. These figures indicate

that the three-tangle in Eq.(7.21) (plotted as dashed line in each figure) is a convex

hull of the thick solid line.
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p∗. When n increases from n = 2, p1 decreases from (2 +
√

3)/4 ∼ 0.933 to 1/2 +

3
√

465/310 ∼ 0.709.
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Figure 7.2: The p-dependence of one-tangle (upper solidlines), sum of squared con-

currences (left solid lines) and three-tangle (right solid lines) for n = 1, 2 and 10.

This figure clearly indicates that not only CKW inequality (7.25) but also (7.28) hold

for all integer n.

In summary, the three-tangle for ρ(p, q) is

τ3(ρ(p, q)) =





0 for 0 ≤ p ≤ p0

αI(p) for p0 ≤ p ≤ p1

αII(p) for p1 ≤ p ≤ 1

(7.21)

and the corresponding optimal decompositions are (7.14), (7.13), and (7.18) re-

spectively. In order to show that Eq.(7.21) is genuine optimal, we plotted the p-

dependence of the three-tangles (7.12) for various ϕ1 and ϕ2 when n = 2 (Fig. 7.1a),
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n = 3 (Fig. 7.1b) and n = 10 (Fig. 7.1c). These curves have been referred as the

characteristic curves[79]. As Ref.[79] indicated, the three-tangle is a convex hull of

the minimum of the characteristic curves (thick solid lines in the figure). Fig. 7.1

indicates that the three-tangles (7.21) plotted as dashed lines are the convex charac-

teristic curves, which implies that Eq.(7.21) is really optimal.

The above analysis can be applied to provide an analytical technique which de-

cides whether or not an arbitrary rank-3 state has vanishing three-tangle. First we

correspond our states to the qutrit states with

|GHZ〉 =




1

0

0


 |W 〉 =




0

1

0


 |W̃ 〉 =




0

0

1


 . (7.22)

It is well-known[138] that the density matrix of the arbitrary qutrit state can be

represented by ρ = (1/3)(I +
√

3~n · ~λ), where ~n is 8-dimensional unit vector and

λi (i = 1, · · · , 8) are Gell-Mann matrices. Thus the points on the S8 correspond to

pure qutrit states while the interior points denote the mixed states1. Then, one can

show straightforwardly that the pure states with vanishing three-tangle correspond

to

|W 〉 →
(

0, 0,−
√

3

2
, 0, 0, 0, 0,

1

2

)
(7.23)

|W̃ 〉 → (0, 0, 0, 0, 0, 0, 0,−1)

|Z
(
p0,

1 − p0

n
, 0, 0

)
〉 →

(
−
√

3ξ1, 0, η1,−
√

3ξ2, 0,
√

3ξ3, 0, η2

)

|Z
(
p0,

1 − p0

n
,
2π

3
,
4π

3

)
〉 →

(√
3

2
ξ1,−

3

2
ξ1, η1,

√
3

2
ξ2,

3

2
ξ2,−

√
3

2
ξ3,

3

2
ξ3, η2

)

|Z
(
p0,

1 − p0

n
,
4π

3
,
2π

3

)
〉 →

(√
3

2
ξ1,

3

2
ξ1, η1,

√
3

2
ξ2,−

3

2
ξ2,−

√
3

2
ξ3,−

3

2
ξ3, η2

)
,

where ξ1 =
√
p0(1 − p0)/n, ξ2 =

√
n− 1ξ1, ξ3 =

√
n− 1(1− p0)/n, η1 = (

√
3/2)(1−

(n + 1)(1 − p0)/n) and η2 = (1/2)(1 − 3(n − 1)(1 − p0)/n). Thus these five points

form a hyper-polyhedron in 8-dimensional space. Then all rank-3 quantum states

corresponding to the points in this hyper-polyhedron have vanishing three-tangle.

Now we would like to consider the Coffman-Kundu-Wootters(CKW) relation[71],

which is

4detρA = C2
AB + C2

AC + τ3(ψ) (7.24)

1Unlike qubit system not all points in S8 do correspond to the qutrit states due to the condition

of star product[138]
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for three-qubit pure state |ψ〉. In Eq.(7.24) CAB and CAC are the concurrences for the

corresponding reduced states. Eq.(7.24) indicates that the entanglement of qubit A is

originated from both bipartite and tripartite contributions. For mixed state Ref.[71]

has shown

4 min [det(ρA)] ≥ C2
AB + C2

AC , (7.25)

where minimum of one-tangle is taken over all possible decompositions of ρ. In

Ref.[76] the CKW inequality (7.25) has been examined for the mixture of GHZ and

W states. For this case it was shown that the one-tangle is always larger than the

sum of squared concurrences and three-tangle.

Now, we would like to check the CKW inequality for ρ(p, q) in Eq.(7.8) with

q = (1− p)/n. In this case one can compute the minimum one-tangle directly, whose

expression is

4 min [detρA] =
1

9

[
(8 − 4p− 12q + 5p2 + 12q2 + 12pq) (7.26)

+4
√
pq(1 − p− q)

(
2
√

6q + 2
√

6(1 − p− q) − 3
√
p
) ]
.

Also it is straightforward to compute the sum of squared concurrences, which is

C2
AB + C2

AC = 2

(
max

[
0,

2

3
(1 − p) − 1

3

√
(3p+ 2q)(2 + p− 2q)

])2

. (7.27)

The one-tangle(upper solid lines), C2
AB + C2

AC(left solid lines), and three-tangle(right

solid lines) are plotted in Fig. 7.1 for n = 1, n = 2 and n = 10. This figure indicates

that all quantities approach to their corresponding n = 1 quantity when n increases

from n = 2. This is consistent with the fact that ρ(p, q) with n = 1 is LU-equivalent

to ρ(p, q) with n = ∞. The inequality

4 min [det(ρA)] ≥ C2
AB + C2

AC + τ3 (7.28)

holds for all n. In the region pC ≤ p ≤ p0, where

pC =
(7n2 − 4n+ 4) − 3n

√
5n2 − 4n+ 4

(n− 2)2
, (7.29)

both C2
AB +C2

AC and τ3 vanish while there is quite substantial one-tangle. Its interpre-

tation is given in Ref.[76] from the mathematical point of view. However, its physical

meaning is still unclear at least for us. In the region p ≥ pC and p ≤ p0 the entan-

glement of the qubit A mainly stems from the bipartite and tripartite correlations,

respectively.
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One may wonder why we do not take q = α(1 − p) with real number 0 ≤ α ≤ 1.

For this case, however, it is unclear whether or not the p-dependence of τ3(p, q, ϕ1, ϕ2)

in Eq.(7.12) has maximum zero at ϕ1 = ϕ2 = 0 regardless of α. If this is correct, our

result can be easily extended to the case of q = α(1 − p) by changing n→ 1/α.

There are many rank-3 mixed states whose three-tangles may exhibit interesting

behavior. For example, let us consider the state

π(p, n) = p|GHZ,+〉〈GHZ,+|+ 1 − p

n
|W 〉〈W |+ (n− 1)(1 − p)

n
|GHZ,−〉〈GHZ,−|,

(7.30)

where |GHZ,±〉 = (1/
√

2)(|000〉 ± |111〉). Unlike ρ(p, n) discussed in the present

chapter π(p, 1) is not LU-equivalent with π(p,∞). When n = 1, π(p, 1) is identical

with ρ(p, q) with n = 1. When n = ∞, the three-tangle of π(p,∞) can be calculated

by similar method and the result is (2p − 1)2. If n increases from n = 2, the three-

tangle should move to (2p−1)2 from Eq.(7.6) smoothly. The particular point p = 1/2

may play a role as a fixed point. It is interesting to examine this behavior by deriving

the optimal decomposition of π(p, n) in the full range of p and n.

Of course, it is extremely important if we develop a calculational technique, which

enables us to compute the three-tangle for the arbitrary mixed states. In order to

explore this issue we should develop a technique first, which enables us to compute

the three-tangle for the arbitrary rank-two mixed states as Hill and Wootters did

in the concurrence calculation in Ref.[38]. For the case of concurrence, however,

Hill and Wootters exploited fully the magic properties of the magic basis {|ei〉, i =

1, · · · , 4}. In this basis the concurrence for the two-qubit state |ψ〉 can be expressed

as |
∑
α2

i |, where |ψ〉 =
∑

i αi|ei〉. Then this property and usual convexification

technique make it possible to compute the concurrence for the arbitrary rank-two

bipartite mixed states. Such a basis, however, is not found in the three-qubit system

so far. Furthermore, we do not know whether or not such a basis exists in the higher-

qubit system. Thus it is very difficult problem to go further this issue.

From the aspect of physics it is also of interest to investigate the physical role

of the three-tangle. As shown in Ref.[57] the two-qubit mixed-state entanglement

provides an information on the fidelity in the bipartite teleportation through noisy

channels. Since the three-tangle is purely tripartite entanglement, it may give cer-

tain information in the scheme of quantum copy machine or three-party quantum

teleportation[139]. It seems to be interesting to explore the physical role of the three-

tangle in the particular real tasks.
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Chapter 8

Three-tangle does not

properly quantify tripartite

entanglement for

Greenberger-Horne-

Zeilinger-type states

Nowadays, it is well-known that entanglement is the most valuable physical re-

source for the quantum information processing such as quantum teleportation[19],

superdense coding[20], quantum cloning[140], quantum algorithms[22, 24], quantum

cryptography[125], and quantum computer technology[32, 15]. Thus, it is highly im-

portant to understand the various properties of the mutipartite entanglement of the

quantum states.

The main obstacle for characterizing the entanglement of the multipartite state

is its calculational difficulties even if original definition of the entanglement measure

itself is comparatively simple. In addition, computation of the entanglement for the

multipartite mixed states is much more difficult than that for the pure states, mainly

due to the fact that the entanglement for the mixed states, in general, is defined by

a convex-roof extension[36, 137]. In order to compute the entanglement explicitly for

the mixed states, therefore, we should find an optimal decomposition of the given
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mixed state, which provides a minimum value of the entanglement over all possible

ensembles of pure states. However, there is no general way for finding the optimal

decomposition for the arbitrary mixed states except bipartite cases[38, 39]. Thus, it

becomes a central issue for the computation of the mixed state entanglement.

Few years ago, fortunately, Wootters[38, 39] has shown how to construct the

optimal decompositions for the most simple bipartite cases. This enables us to be able

to compute the concurrence, one of the entanglement measure, analytically for the

arbitrary 2-qubit mixed states. It also makes it possible to understand more deeply

the role of the entanglement in the real quantum information processing[57]. Most

importantly, it becomes a basis for the quantification of three-party entanglement

called residual entanglement or three-tangle[71]. Thus, it is extremely important to

find a calculation tool for the three-tangle if one wants to take a step toward a

fundamental issue, i.e. characterization of the mutipartite mixed state entanglement.

It is well-known[65] that the three-qubit pure states can be classified by prod-

uct states (A − B − C), biseparable states (A − BC,B − AC,C − AB) and true

tripartite states (ABC) through stochastic local operation and classical communica-

tion(SLOCC). The true tripartite states consist of two different classes, GHZ-class

and W-class, where

|GHZ〉 = 1√
2

(|000〉+ |111〉)
|W 〉 = 1√

3
(|001〉 + |010〉+ |100〉) .

(8.1)

Since the three-tangle τ3 for the pure state |ψ〉 =
∑1

i,j,k=0 aijk|ijk〉 is defined as[71]

τ3 = 4|d1 − 2d2 + 4d3| (8.2)

with
d1 = a2

000a
2
111 + a2

001a
2
110 + a2

010a
2
101 + a2

100a
2
011

d2 = a000a111a011a100 + a000a111a101a010

+a000a111a110a001 + a011a100a101a010

+a011a100a110a001 + a101a010a110a001

d3 = a000a110a101a011 + a111a001a010a100,

(8.3)

it is easy to show that the product and biseparable states have zero three-tangle.

This fact implies that the three-tangle is a genuine measure for the three-party en-

tanglement.

However, there is a crucial defect in the three-tangle as a three-party entanglement

measure. While the three-tangle for the GHZ state is maximal, i.e. τ3(GHZ) = 1, it

vanishes for the W-state. This means that the three-tangle does not properly quantify
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the three-party entanglement for the W-type states. The purpose of this chapter is to

show that besides W-type states the three-tangle τ3 does not properly quantify the

three-party entanglement for a rank-3 mixtures composed of only three GHZ-type

states.

Recently, the three-tangle for rank-2 mixture of GHZ and W states is analytically

computed[76, 78]. In Ref.[80], furthermore, the three-tangle for the rank-3 mixture

of GHZ, W, and inverted W states is also analytically computed. In this chapter we

start with showing that a mixed state

ΠGHZ =
1

3

[
|GHZ, 2+〉〈GHZ, 2+|+ |GHZ, 3+〉〈GHZ, 3+|
+ |GHZ, 4+〉〈GHZ, 4+|

]
(8.4)

has vanishing three-tangle, where we define for later use as following:

|GHZ, 1±〉 = 1√
2

(|000〉 ± |111〉)
|GHZ, 2±〉 = 1√

2
(|001〉 ± |110〉)

|GHZ, 3±〉 = 1√
2

(|010〉 ± |101〉)
|GHZ, 4±〉 = 1√

2
(|011〉 ± |100〉) .

(8.5)

Let us consider a pure state

|J(θ1, θ2)〉 = 1√
3
|GHZ, 2+〉 − 1√

3
eiθ1 |GHZ, 3+〉

− 1√
3
eiθ2 |GHZ, 4+〉.

(8.6)

Then, it is easy to show that the three-tangle of |J(θ1, θ2)〉 is

τ3(θ1, θ2) =
1

9
|1 −

(
eiθ1 − eiθ2

)2 ||1 −
(
eiθ1 + eiθ2

)2 |, (8.7)

which vanishes when

(θ1, θ2) =





( π/3, 2π/3) , (5π/3, 4π/3)

(2π/3, π/3) , (4π/3, 5π/3)

( π/3, 5π/3) , (5π/3, π/3)

(2π/3, 4π/3) , (4π/3, 2π/3)




. (8.8)

Moreover, one can show straightforwardly that ΠGHZ can be decomposed into

ΠGHZ =
1

8




|J (π/3, 2π/3)〉〈J (π/3, 2π/3)| + |J (5π/3, 4π/3)〉〈J (5π/3, 4π/3)|
+ |J (π/3, 5π/3)〉〈J (π/3, 5π/3)| + |J (2π/3, 4π/3)〉〈J (2π/3, 4π/3)|
+ terms with exchanged arguments


 .

(8.9)
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Combining Eq.(8.8) and (8.9), one can show that Eq.(8.9) is the optimal decompo-

sition of ΠGHZ and its three-tangle is zero:

τ3 (ΠGHZ ) = 0. (8.10)

The reason why ΠGHZ has vanishing three-tangle is that the optimal ensembles given

in Eq. (8.9) are all W-states. Therefore, ΠGHZ can also be expressed in terms of only

W-states. As a result, we encounter a very strange situation that ΠGHZ has vanishing

three- and two-tangles1, but non-vanishing one-tangle

4 min [det (TrBCΠGHZ )] =
5

9
. (8.11)

For comparison one can compute π-tangle[141], another three-party entanglement

measure defined in terms of the global negativities[142]. It is easy to show that the

π-tangle of ΠGHZ is not vanishing but 1/9. This fact seems to indicate that the

three-tangle does not properly reflect the three-party entanglement for GHZ-type

states as well as W-type states.

We can use Eq.(8.10) for computing the three-tangles of the higher-rank mixed

states. For example, let us consider the following rank-4 state

σ = x|GHZ, 1+〉〈GHZ, 1 + | + (1 − x)ΠGHZ (8.12)

with 0 ≤ x ≤ 1. In order to compute the three-tangles for σ we first consider a pure

state

|X(x, ϕ1, ϕ2, ϕ3)〉 =
√
x|GHZ, 1+〉−

√
1 − x

3

(
eiϕ1 |GHZ, 2+〉 + eiϕ2 |GHZ, 3+〉
+eiϕ3 |GHZ, 4+〉

)
.

(8.13)

Then it is easy to show that the three-tangle of |X(x, ϕ1, ϕ2, ϕ3)〉 becomes

τ3 (|X(x, ϕ1, ϕ2, ϕ3)〉) =

∣∣∣∣∣∣∣∣∣∣∣∣

x2 + (1−x)2

9

(
e4iϕ1 + e4iϕ2 + e4iϕ3

)

− 2
3x(1 − x)

(
e2iϕ1 + e2iϕ2 + e2iϕ3

)

− 2
9 (1 − x)2

(
e2i(ϕ1+ϕ2) + e2i(ϕ1+ϕ3)

+e2i(ϕ2+ϕ3)

)

− 8
√

3
9

√
x(1 − x)3ei(ϕ1+ϕ2+ϕ3)

∣∣∣∣∣∣∣∣∣∣∣∣

. (8.14)

The vectors |X(x, ϕ1, ϕ2, ϕ3)〉 has following properties. The three-tangle of it has

the largest zero at x = x0 ≡ 3/4 and ϕ1 = ϕ2 = ϕ3 = 0. The vectors |X(x, 0, 0, 0)〉,
1It is easy to show that C2

AB
and C2

AC
are zero, where C is concurrence for corresponding reduced

states.
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|X(x, 0, π, π)〉, |X(x, π, 0, π)〉 and |X(x, π, π, 0)〉 have same three-tangles. Finally, σ

can be decomposed into

σ =
1

4

[
|X(x, 0, 0, 0)〉〈X(x, 0, 0, 0)|+ |X(x, 0, π, π)〉〈X(x, 0, π, π)|
+|X(x, π, 0, π)〉〈X(x, π, 0, π)| + |X(x, π, π, 0)〉〈X(x, π, π, 0)|

]
. (8.15)

When x ≤ x0, one can construct the optimal decomposition in the following form:

σ =
x

4x0

[
|X(x0, 0, 0, 0)〉〈X(x0, 0, 0, 0)|+ |X(x0, 0, π, π)〉〈X(x0, 0, π, π)|
+|X(x0, π, 0, π)〉〈X(x0, π, 0, π)| + |X(x0, π, π, 0)〉〈X(x0, π, π, 0)|

]

+
x0 − x

x0
ΠGHZ . (8.16)

Since ΠGHZ has the vanishing three-tangle, one can show easily

τ3(σ) = 0 when x ≤ x0 = 3/4. (8.17)

Now, let us consider the three-tangle of σ in the region x0 ≤ x ≤ 1. Since Eq.(8.15)

is an optimal decomposition at x = x0, one can conjecture that it is also optimal in

the region x0 ≤ x. As will be shown shortly, however, this is not true at the large-x

region. If we compute the three-tangle under the condition that Eq.(8.15) is optimal

at x0 ≤ x, its expression becomes

αI(x) = x2 − 1

3
(1 − x)2 − 2x(1 − x) − 8

√
3

9

√
x(1 − x)3. (8.18)

However, one can show straightforwardly that αI(x) is not a convex function in the

region x ≥ x∗, where

x∗ =
1

4

(
1 + 21/3 + 41/3

)
≈ 0.961831. (8.19)

Therefore, we need to convexify αI(x) in the region x1 ≤ x ≤ 1 to make the three-

tangle to be convex function, where x1 is some number between x0 and x∗. The

number x1 will be determined shortly.

In the large x-region one can derive the optimal decomposition in a form:

σ =
1 − x

4(1 − x1)

[
|X(x1, 0, 0, 0)〉〈X(x1, 0, 0, 0)|+ |X(x1, 0, π, π)〉〈X(x1, 0, π, π)|
+|X(x1, π, 0, π)〉〈X(x1, π, 0, π)| + |X(x1, π, π, 0)〉〈X(x1, π, π, 0)|

]

+
x− x1

1 − x1
|GHZ, 1+〉〈GHZ, 1 + | (8.20)

which gives a three-tangle as

αII(x, x1) =
1 − x

1 − x1
αI(x1) +

x− x1

1 − x1
. (8.21)
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Since d2αII/dx
2 = 0, there is no convex problem if αII(x, x1) is a three-tangle in the

large-x region. The constant x1 can be fixed from the condition of minimum αII , i.e.

∂αII(x, x1)/∂x1 = 0, which gives

x1 =
1

4
(2 +

√
3) ≈ 0.933013. (8.22)

As expected, x1 is between x0 and x∗. Thus, finally the three-tangle for σ becomes

τ3(σ) =





0 x ≤ x0

αI(x) x0 ≤ x ≤ x1

αII(x, x1) x1 ≤ x ≤ 1

(8.23)

and the corresponding optimal decompositions are Eq.(8.16), Eq.(8.15) and Eq.(8.20)

respectively. In order to show Eq.(8.23) is genuine optimal, first we plot x-dependence

of Eq.(8.14) for various ϕi (i = 1, 2, 3). These curves have been referred as the

characteristic curves[79]. Then, one can show, at least numerically, that Eq.(8.23)

is a convex hull of the minimum of the characteristic curves, which implies that

Eq.(8.23) is genuine three-tangle for σ.

It is straightforward to show that the mixture σ has vanishing two-tangles, i.e.

CAB = CAC = 0, but non-vanishing one-tangle

C2
A(BC)(σ) =

1

9

(
5 − 4x+ 8x2 − 8

√
3x(1 − x)3

)
. (8.24)

Thus, the monogamy inequality τ3+C2
AB+C2

AC ≤ C2
A(BC) holds for the rank-4 mixture

σ.

Eq.(8.10) can be used to compute the upper bound of the three-tangle for the

higher-rank states. For example, let us consider the following rank-8 state

ρ = ξσ + (1 − ξ)σ̃ (8.25)

where σ is given in Eq.(8.12) and σ̃ is

σ̃ = y|GHZ, 1−〉〈GHZ, 1 − |

+ 1−y
3

[
|GHZ, 2−〉〈GHZ, 2 − | + |GHZ, 3−〉〈GHZ, 3 − |

+|GHZ, 4−〉〈GHZ, 4 − |

]
.

(8.26)

If x = y, σ and σ̃ are local-unitary(LU) equivalent with each other. Since the three-

tangle is LU-invariant quantity, τ3(σ̃) should be identical to τ3(σ) when x = y

Since ρ is rank-8 mixed state, it seems to be extremely difficult to compute its

three-tangle analytically. If, however, 0 ≤ y ≤ 3/4, τ3(σ̃) becomes zero and the above

analysis yields a non-trivial upper bound of τ3(ρ) as following:

τ3(ρ) ≤ ξτ3(σ). (8.27)
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In this chapter we have shown that the three-tangle does not properly quantify

the three-party entanglement for some mixture composed of only GHZ states. This

fact has been used to compute the (upper bound of) three-tangles for the higher-rank

mixed states.

The fact τ3(σ) = 0 for x ≤ 3/4 can be used to find other rank-4 mixtures which

have vanishing three-tangle by considering the Bloch hypersphere of d = 4 qudit

system. First, we correspond the GHZ-states in σ to the basis of the qudit system as

follows:

|GHZ, 1+〉 = (1, 0, 0, 0)
T
, |GHZ, 2+〉 = (0, 1, 0, 0)

T

|GHZ, 3+〉 = (0, 0, 1, 0)
T
, |GHZ, 4+〉 = (0, 0, 0, 1)

T (8.28)

where T stands for transposition. It is well-known[143] that the density matrix of the

arbitrary d = 4 qudit state can be represented by ρ = (1/4)(I +
√

6~n · ~λ), where ~n is

15-dimensional unit vector and

~λ =
(
Λ12

s , · · · ,Λ34
s ,Λ

12
a , · · · ,Λ34

a ,Λ
1,Λ2,Λ3

)
. (8.29)

The generalized Gell-Mann matrices Λij
s , Λij

a and Λj are explicitly given in Ref.[143].

Then, the 15-dimensional Bloch vectors for |X (3/4, 0, 0, 0)〉, |X (3/4, 0, π, π)〉,
|X (3/4, π, 0, π)〉, and |X (3/4, π, π, 0)〉 can be easily derived. Thus, these four points

form a hyper-polyhedron in 16-dimensional space. Then all rank-4 quantum states

corresponding to the points in this hyper-polyhedron have vanishing three-tangle.

As we have shown in this chapter, ΠGHZ has vanishing two and three-tangle, but

non-vanishing one-tangle. It makes the left-hand side of the monogamy inequality

τ3 + C2
AB + C2

AC ≤ C2
A(BC) reduce zero. Thus, natural question arises: what physical

resources make the one-tangle to be non-vanishing? Authors in Ref.[144] conjectured

that the origin of the non-vanishing one-tangle comes from the higher tangles of the

purified state. To support their argument they considered a multipartite entangle-

ment measure defined

Ems(ΨN ) =

∑
k τk(Rk) − 2

∑
i<j C2

ij

N
(8.30)

where τk(Rk) = 2(1 − Trρ2
k) and |ΨN〉 is a N -qubit purified state of the given mixed

state. Since the numerator of Ems is difference between the total one-tangle and total

two-tangle, it measures a contribution of the higher-tangles to the one-tangle. If we

choose the purified state as

|Ψ5〉 = 1√
3

(
|GHZ, 2+〉|00〉+ |GHZ, 3+〉|01〉+ |GHZ, 4+〉|10〉

)
, (8.31)
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Ems(Ψ5) reduces to 43/45, which is larger than the one-tangle 5/9. Thus, it is possible

that part of Ems(Ψ5) converts into the non-vanishing one-tangle. However, still we

do not know how to compute the one-tangle explicitly from Ems(Ψ5).

The three-tangle itself is a good three-party entanglement measure. It exactly

coincides with the modulus of a Cayley’s hyperdeterminant[72, 73] and is polyno-

mial invariant under the local SL(2,C) transformation[74, 75]. As shown, however,

it cannot properly quantify the three-party entanglement of W-state and ΠGHZ :

τ3(W ) = τ3(ΠGHZ ) = 0. On the other hand, the π-tangle gives the non-zero val-

ues: π3(W ) = 4(
√

5 − 1)/9 and π3(ΠGHZ) = 1/9. Does this fact simply imply the

crucial defects of the three-tangle as a three-party entanglement measure? Here, we

would like to comment on the physical implication of τ3(ΠGHZ) = 0. Few years ago

the three-qubit mixed states were classified in Ref.[81]. Following Ref.[81] the whole

mixed states are classified as separable (S), biseparable (B), W and GHZ classes.

These classes satisfy S ⊂ B ⊂W ⊂ GHZ. One remarkable fact, which was proved in

this reference, is that the W \B class is not of measure zero among all mixed-states.

This is contrary to the case of the pure states, where the set of W-state forms mea-

sure zero[65]. This fact implies that the portion of W \ B class in the whole mixed

states becomes larger compared to that of W class in the whole pure states. How

could this happen? The fact τ3(ΠGHZ) = 0 sheds light on this issue. Since ΠGHZ has

zero three-tangle but non-zero π-tangle, it is manifestly an element of W \ B class.

As shown in Eq.(8.4), however, it consists of three GHZ states without pure W-type

state. We think there are many W \B states, which are mixture of only GHZ states.

It increases the portion of W \ B class and eventually makes the W \ B class to be

of non-zero measure in the whole mixed states.
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Chapter 9

Conclusion

In this thesis we present the recent results on the computation of the pure- and mixed-

states entanglement measures. As well-known, entanglement is a genuine physical re-

source for the quantum information processing. In fact, entanglement plays a central

role in teleportation process[19, 57, 139, 145, 115], superdense coding[20, 145, 115],

quantum copy machine[146, 147, 148, 149], quantum cryptography[18, 21, 150, 151]

etc. In this reason it is highly important to understand and characterize the entan-

glement of the quantum states.

In chapter II we have presented the three theorems which is important for the com-

putation of the geometric and Groverian entanglement measure. Theorem 1 enables

us to compute the entanglement measures if we know only the one of the 1-particle

reduced states obtained by taking partial trace. This theorem is more useful for the

computation of the entanglement of the 3-qubit states because it makes it possible

to compute the measures with the two qubit reduced state. Theorem 2 says that if

the 1-particle reduced states of the two pure-states are LU-equivalent, these states

have same geometric and Groverian entanglement measures. Therefore, this theorem

can be used to characterize the set of the pure states. Theorem 3 states the upper

bound of the entanglement measure. This theorem can be used to characterize the

maximally entangled states in the higher-qubit system.

Using a Theorem 1 given in chapter 2 we have computed the geometric measure

defined Λ(ψ) = 1 − Pmax(ψ) or Groverian entanglement measure defined G(ψ) =√
1 − Pmax(ψ) for the generalized W-state

|W 〉 = a|100〉+ b|010〉+ c|001〉, (9.1)

where Pmax is a maximal overlap probability with a set of the separable states. It
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turns out that Pmax for W-state has two different expressions depending on the

parameter space. To summarize the result of this chapter we define {α, β, γ} as

{a, b, c} with decreasing order. If, then, α2 ≥ β2 + γ2, Pmax = max(a2, b2, c2) = α2

and if α2 ≤ β2 + γ2, Pmax = 4R2, where

R =
abc√

(a+ b+ c)(a+ b− c)(a− b+ c)(−a+ b+ c)
(9.2)

is a circumradius of the triangle (a, b, c). This is a first report on the fact that the

entanglement measure can be expressed in terms of the geometrical quantities of the

polygons.

To be sure that the expression of the entanglement measure in terms of the

geometrical quantities is a general property we have considered the more general

3-qubit state

|ψ〉 = a|100〉+ b|010〉+ c|001〉+ d|111〉 (9.3)

in chapter 3. It turns out that for this state Pmax has generally three different ex-

pressions. However, one of them, expression in terms of the circumradius of the

crossed quadrangle does not have applicable domain in the parameter space. As

a result, Pmax for |ψ〉 has two different expression depending on the parameter

space. To summarize it we define {α, β, γ, δ} as {a, b, c, d} with decreasing order.

If α2 ≥ β2 + γ2 + δ2 + 2βγδ/α, then Pmax = max(a2, b2, c2, d2) = α2 and α2 ≤
β2 + γ2 + δ2 + 2βγδ/α, Pmax = 4R2, where

R =
1

4

√
(ab+ cd)(ac+ bd)(ad+ bc)

(p− a)(p− b)(p− c)(p− d)
(9.4)

is a circumradius of a convex quadrangle (a, b, c, d), where p = (a + b + c + d)/2.

Therefore, the expression of the entanglement in terms of some geometrical quantities

seems to be general property of the entanglement.

Since the entanglement measures should be entanglement monotone and LU-

invariant, it is of great interest to express the derived results in terms of the LU-

invariants. Few years ago Acin et al[68] classified the whole set of 3-qubit pure states

as a five types via the generalized Schmidt decomposition. Using these classifica-

tions we have computed the entanglement measure for type I, type II and type III

and re-expressed them in terms of the LU-invariants Ji (i = 1, · · · , 5) in chapter

V. Although we have failed to derive the analytic expressions of the entanglement

measure for type IV and type V, we have shown that the phase factor of the quantum

state does not have any effect to the entanglement measure for type IV. This fact

108



with geometric interpretation on the entanglement enables us to derive the analytical

expression for the general arbitrary three-qubit states in the future.

The successful geometrical interpretation for the geometric or Groverian entan-

glement measure for the three-qubit states as presented in chapter III and chapter IV

gives rise to a following question naturally: does the entanglement of the higher-qubit

system also have some geometrical meaning? This question is explored in chapter VI

by considering the one-parametric n-qubit W-state and two-parametric 4-qubit W-

state. Although we have derived the analytic expressions of the entangled measures

for these quantum states, we have failed to find a geometrical interpretation be-

cause we do not have complete expression for the generalized W-states. Still, it is

open problem to find a connection between geometry of polygons and multipartite

entanglement. We hope we understand more profoundly the meaning and physical

implication of this connection.

In chapter VII and VIII we have considered the entanglement for the mixed

states. Since the entanglement for the mixed state is generally defined by a convex-

roof extension, it is much more difficult to compute the entanglement measure for the

mixed state because it is highly non-trivial to find a optimal decomposition for the

given mixed state. In chapter VI we have computed the three-tangle for the mixture

composed of GHZ, W and flipped W states, whose density matrix is

ρ(p, q) = p|GHZ〉〈GHZ| + q|W 〉〈W | + (1 − p− q)|W̃ 〉〈W̃ | (9.5)

where |GHZ〉 = (1/
√

2)(|000〉 + |111〉), |W 〉 = (1/
√

3)(|100〉 + |010〉 + |001〉) and

|W̃ 〉 = (1/
√

3)(|011〉 + |101〉 + |110〉). It turns out that depending on p and q the

three-tangle of ρ(p, q) has three different expressions. We also provide an analytical

technique, which determines whether or not an arbitrary rank-3 mixed state has

vanishing three-tangle by making use of the Bloch sphere S8 of the qutrit system.

We also briefly discussed in this chapter the physical implication of the monogamy

inequality, generalization of CKW-inequality derived in Ref.[71].

It is well-known that W-state has vanishing three-tangle even though W-state has

a pure tripartite entanglement. This means that the three-tangle does not properly

quantify the tripartite entanglement of W-state. In chapter VIII in addition to W-

state we have shown that the three-tangle does not properly quantify the tripartite

entanglement of some mixed states composed of only GHZ states. To verify this

statement explicitly we have constructed a mixture defined

ΠGHZ =
1

3

[
|GHZ, 2+〉〈GHZ, 2+|+|GHZ, 3+〉〈GHZ, 3+|+|GHZ, 4+〉〈GHZ, 4+|

]

(9.6)
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where

|GHZ, 2±〉 =
1√
2

(|001〉 ± |110〉) |GHZ, 3±〉 =
1√
2

(|010〉 ± |101〉)

|GHZ, 4±〉 =
1√
2

(|011〉 ± |100〉) , (9.7)

and have shown that ΠGHZ has a vanishing three-tangle. This surprising fact in-

dicates that there should exist an pure state ensemble of ΠGHZ , whose pure-states

are all W-states even though it is composed of only GHZ states. Such an ensemble

is explicitly constructed in this chapter. This fact may shed light on the physical

reason why the set of the mixed W-states is not of measure zero in the whole set of

the three-qubit mixed states while pure W-states have zero measure.

Quantum information theories have various applicable regions such as quantum

computer, quantum cryptography, quantum copying, quantum repeater, etc. Above

all my major concern is to apply the quantum information techniques to the black

hole physics, especially the information loss via Hawking radiation. In the future I

would like to explore this subject and contribute to the development of quantum

gravity.
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APPENDIX

Appendix A
One can easily show that the elements of O defined in Eq.(5.6) are given by

O11 =
1

2
(u11u

∗
22 + u∗11u22 + u12u

∗
21 + u∗12u21) (A.1)

O22 =
1

2
(u11u

∗
22 + u∗11u22 − u12u

∗
21 − u∗12u21)

O33 = |u11|2 − |u12|2

O12 =
i

2
(u12u

∗
21 + u11u

∗
22 − u∗12u21 − u∗11u22)

O21 =
i

2
(u12u

∗
21 + u∗11u22 − u∗12u21 − u11u

∗
22)

O13 = u11u
∗
12 + u∗11u12

O31 = u11u
∗
21 + u∗11u21

O23 = −i (u11u
∗
12 + u∗21u22)

O32 = i (u11u
∗
21 + u∗12u22)

where uij is element of the unitary matrix defined in Eq.(5.6). It is easy to prove

OOT = OTO = 11, which indicates that Oαβ is an element of O(3).
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APPENDIX

Appendix B
If the density matrix associated from the pure state |ψ〉 in Eq.(5.12) is represented

by Bloch form like Eq.(5.11), the explicit expressions for ~vi are

~v1 =




2λ0λ1 cosϕ

2λ0λ1 sinϕ

λ2
0 − λ2

1 − λ2
2 − λ2

3 − λ2
4


 ~v2 =




2λ1λ3 cosϕ+ 2λ2λ4

−2λ1λ3 sinϕ

λ2
0 + λ2

1 + λ2
2 − λ2

3 − λ2
4




~v3 =




2λ1λ2 cosϕ+ 2λ3λ4

−2λ1λ2 sinϕ

λ2
0 + λ2

1 − λ2
2 + λ2

3 − λ2
4


 (B.1)

and the components of h(i) are

h
(1)
11 = 2λ2λ3 + 2λ1λ4 cosϕ, h

(1)
22 = 2λ2λ3 − 2λ1λ4 cosϕ (B.2)

h
(1)
33 = λ2

0 + λ2
1 − λ2

2 − λ2
3 + λ2

4, h
(1)
12 = h

(1)
21 = −2λ1λ4 sinϕ

h
(1)
13 = −2λ2λ4 + 2λ1λ3 cosϕ, h

(1)
31 = −2λ3λ4 + 2λ1λ2 cosϕ

h
(1)
23 = −2λ1λ3 sinϕ, h

(1)
32 = −2λ1λ2 sinϕ

h
(2)
11 = −h(2)

22 = 2λ0λ2, h
(2)
33 = λ2

0 − λ2
1 + λ2

2 − λ2
3 + λ2

4

h
(2)
12 = h

(2)
21 = 0, h

(2)
13 = 2λ0λ1 cosϕ

h
(2)
31 = −2λ3λ4 − 2λ1λ2 cosϕ, h

(2)
23 = 2λ0λ1 sinϕ

h
(2)
32 = 2λ1λ2 sinϕ.

The matrix h
(3)
αβ is obtained from h

(2)
αβ by exchanging λ2 with λ3. The non-vanishing

components of gαβγ are

g111 = −g122 = −g212 = −g221 = 2λ0λ4 (B.3)

g113 = −g223 = 2λ0λ3, g131 = −g232 = 2λ0λ2

g133 = 2λ0λ1 cosϕ, g233 = 2λ0λ1 sinϕ

g312 = g321 = 2λ1λ4 sinϕ, g311 = −2λ2λ3 − 2λ1λ4 cosϕ

g313 = 2λ2λ4 − 2λ1λ3 cosϕ, g322 = −2λ2λ3 + 2λ1λ4 cosϕ

g323 = 2λ1λ3 sinϕ, g331 = 2λ3λ4 − 2λ1λ2 cosϕ

g332 = 2λ1λ2 sinϕ, g333 = λ2
0 − λ2

1 + λ2
2 + λ2

3 − λ2
4.
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국문요약

여러 부분으로 나뉜 양자상태의 얽힘에 대한 연구

물리학과 정이리

지도교수 박대길

본학위논문에서는 pure양자상태와 mixed양자상태의양자얽힘에대한최근연

구결과들을 고찰하였다. 특히 여러 3-qubit 양자상태들의 기하학적 양자 얽힘 mea-

sure와 Groverian 양자 얽힘 measure를 해석적으로 구하였고, 구하여진 결과들을

local unitary 불변량으로 표현하였으며, 또한 양자상태의 parameter들로 이루어진

다각형의 기하학적양으로 재분석 하였다. 이와 같은 양자 얽힘에 대한 기하학적 해

석은앞으로 multi-party양자상태의양자얽힘에대한깊이있는이해를제공하여줄

것으로생각한다.본논문에서는앞서언급한양자얽힘의기하학적의미를자세하게

논하였다. Mixed 양자상태의 경우 본 학위논문에서는 Greenberger-Horne-Zeilinger

(GHZ)-, W-,그리고뒤집어진W-양자상태로이루어진 rank-3 mixture의경우 resid-

ual entanglement 혹은 3-tangle을 해석적으로 구하였고, 이 결과를 이용하여 일반

적인 Coffman-Kundu-Wootters inequality 인 monogamy inequality를 분석하였다.

또한 W-양자상태뿐 아니라 GHZ-양자상태들만으로 이루어진 특별한 mixture의 경

우도 3-tangle이 그 양자 상태의 tripartite 양자 얽힘을 제대로 나타내지 못한다는

사실을 증명하였다. 이 사실은 GHZ-양자상태들로만 이루어진 특별한 mixture들은

W-상태들만으로도 optimal decomposition이 이루어진다는 것을 의미한다. 이 놀라

운 결과가 의미하는 물리적 의미는 아직 확실하지 않으며 앞으로의 연구과제이다.

특히 이 사실은 Acin 등이 최근에 밝힌 “3-qubit mixed W-양자상태집합은 3-qubit

전체 양자상태 집합에서 non-zero measure를 갖는다”는 사실을 보다 물리적으로

이해하는데 실마리를 제공할 것으로 기대하고 있다.
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